
Acta Academiae Paedagogicae Agriensis, Sectio Mathematicae 31 (2004) 99–105

COMMON TERMS IN CERTAIN BINARY RECURRENCES

Erzsébet Orosz (Eger, Hungary)

Abstract. The purpose of this paper is to prove that the common terms of linear

recurrences M(2a,−1,0,b) and N(2c,−1,0,d) have at most 2 common terms if p=2, and have at

most three common terms if p>2 where D and p are fixed positive integers and p is a prime,

such that neither D nor D+p is perfect square, further a,b,c,d are nonzero integers satisfying the

equations a2
−Db2=1 and c2

−(D+p)d2=1.
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1. Introduction

Let G = G(A, B, G0, G1) = {Gn}∞n=0 be a second order linear recursive
sequence of rational integers defined by the recursion

Gn = AGn−1 + BGn−2 (n > 1),

where A, B and the initial terms G0, G1 are fixed integers, AB 6= 0 and G2
0+G2

1 6= 0.

Let α and β be the roots of the characteristic polynomial x2 − Ax − B of the
sequence G. Throughout this paper we assume that |α| ≥ |β| and the sequence G

is nondegenerate, that is, α
β

is not a root of unity.

It is well-known that the terms of G can be written in the form

(1) Gn =
qαn − eβn

α − β
,

where q = G1 − G0β and e = G1 − G0α.

It can be proved that in the case A2 + 4B > 0

|Gn| > c|α|n,
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while in the case A2 + 4B < 0

(2) |Gn| >
c1|α|n
n−c0

holds by the results of C. L. Stewart [13], where c, c1, c0, n0 are positive real
constants depending on the parameters of G and n > n0.

Thus |Gn| > x for all fixed real x, if n is large enough, that is all elements can
be equal to finitely many other elements of the sequence G.

A similar problem is to determine the common terms of distinct sequences.

G. Revuz [11] proved a general theorem for the common terms of different
second order linear recurrences G and H defined by the same A, B constants: The
equation Gx = Hy has finitely many solutions (x, y); if x > n0 then Gx 6= Hy.

A variety of classical algebraic and elementary estimations to the common
terms of recursive sequences and similar problems can be found in the papers of
M. D. Hirsch [3], P. Kiss [4], [5], M. Mignotte [9], F. Mátyás [8], H. P. Schlickewei,
W. M. Schmidt [12] and others.

Using Shure’s theorem K. Liptai [7] proved that certain recursive sequences
have finitely many common elements.

J. Binz [2] proved that the sequences G (6,−1, 0, 6) and H (10,−1, 0, 10) have
only one common term.

There is a connection between the number of solutions of a special type of
Pell’s equations and the number of common terms in certain recurrences, that is
why we use the following result:

Michael A. Bennett [1] proved that if a and b are distinct nonzero integers
then the simultaneous Pell’s equations

x2 − az2 = 1, y2 − bz2 = 1

possess at most three solutions in positive integers (x, y, z).

1. Results and proofs

Some special cases are the most interesting because the number of the common
terms can be determined.

The aim of the next part is to give the common terms in certain binary
recurrences and generalize the result of J. Binz. Our main result is the following.

Theorem 1. Let D and p be fixed positive integers, where p is a prime, such that

neither D nor D + p is perfect square. Further let a, b, c, d be non-zero integers

satisfying the equations a2 − Db2 = 1 and c2 − (D + p)d2 = 1. Then the sequences

M (2a,−1, 0, b) and N (2c,−1, 0, d), apart from the zero initial terms, have at most

two common terms if p = 2.
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Proof. First we prove that (x, y) = (x, Mn) is a solution of the equation

(3) x2 − Dy2 = 1

for all Mn. The number pairs (xn, yn) are also solutions, where

(4) xn + yn

√
D =

(

a + b
√

D
)n

(n = 0, 1, 2, ...).

This follows from the condition (x, y) = (a, b) and

x2
n − Dy2

n =
(

xn + yn

√
D

)(

xn − yn

√
D

)

=
(

a + b
√

D
)n (

a − b
√

D
)n

=
(

a2 − Db2
)n

= 1.

From (4) we have

yn =
1

2
√

D

[(

a + b
√

D
)n

−
(

a − b
√

D
)n]

.

The roots of the characteristic polynomial x2 − 2ax + 1 of the sequence M are:

α = a +
√

a2 − 1 = a + b
√

D,

β = a − b
√

D,

so with M0 = 0, M1 = b, α− β = 2b
√

D and by (1) the equality yn = Mn holds. It
is similarly true for all terms Nk that (z, y) = (z, Nk) is a solution of the equation

z2 − (D + p) y2 = 1.

If the sequences M and N have some common terms, then the number of integer
solutions (x, y, z) of the equation system

(5) x2 − Dy2 = 1,

z2 − (D + p) y2 = 1

is the number of the different common terms. It is enough to prove that the equation
system has at most two solutions if y 6= 0. Assume that (x, y, z) is the solution of
(5). In this case

x2 − Dy2 = z2 − (D + p) y2

so

(6) x2 + py2 = z2
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and gcd(x, y) = 1, gcd(z, y) = 1. The solution (x, y, z) is a positive solution of
equation (6). If gcd(x, z) > 1 then p | x2 + y2 and p | y contradict to what is
mentioned before. Now p = 2. Then (6) can be written in form

(7) x2 + 2y2 = z2.

The primitive solutions of (7) are: x = |u2−2v2|, y = 2uv, z = u2+v2,gcd(u, v) = 1,
where u is an odd integer. Substitute these into the first part of (5)

(

u2 − 2v2
)2 − 4Du2v2 = 1.

It can be written in the form

(8) [u2 − (2 + 2D) v2]2 −
(

8D + 4D2
)

v4 = 1.

The diophantine equation x2 − Dy4 = 1 has at most two solutions (Mordell [11]),

8D + 4D2 = (2D + 2)
2 − 4 is not perfect square. Thus (8) holds for at most two

pairs (u, v). If p = 2 than the equation system (5) has at most two solutions.

Theorem 2. Let D and p be a fixed positive integer and a prime, respectively, such

that neither D nor D+p is perfect square. Further let a, b, c, d be non-zero integers

satisfying the equations a2 − Db2 = 1 and c2 − (D + p)d2 = 1. Then the sequences

M (2a,−1, 0, b) and N (2c,−1, 0, d), apart from the zero initial terms have at most

three common terms if p > 2.

Proof. If the sequences M and N have some common terms then the equation
system

x2 − Dy2 = 1,

z2 − (D + p) y2 = 1

has at most three solutions. It follows from the first Proof. It is enough to prove
that this equation system have at most three solutions if y 6= 0. It follows from
the result of M. A. Bennett which was published in [1]. Our simultaneous Pell’ s
equation system has at most three solutions in positive integers (x, y, z). If p > 2
then the sequences M(2a,−1, 0, b) and N(2c,−1, 0, d) apart from the zero initial
terms have at most three common terms.

Remark: If we use the result of Mordell [10] then it can be proved that the number
of common terms at most four.

If p > 2 then the primitive solutions of (6)

(9) x = |pm2 − n2|, y = 2mn, z = pm2 + n2

or

(10) x =

∣

∣

∣

∣

pu2 − v2

2

∣

∣

∣

∣

, y = uv, z =
pu2 + v2

2
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where m and n are different and gcd(m, n) = 1, gcd(u, v) = 1. Substitute these
into the first equation of (5) and we get from (9)

(

pm2 − n2
)2 − 4Dm2n2 = 1,

whereas from (10)
(

pu2 − v2

2

)2

− Du2v2 = 1.

These can be formed as

(11)
(

n2 − (p + 2D)m2
)2 − (4D2 + 4pD)m4 = 1,

(12)

(

v2 − (p + 2D)u2

2

)2

− (D2 + pD)u4 = 1.

It can be shown that neither 4D2 + 4pD nor D2 + pD are perfect squares.
Equations (11) and (12) have at most 2 solutions. So the equation system of (5)
has at most 4 integer solutions.

Theorem 3. Let L be a fixed positive integer such that neither L nor L + 8 is

perfect square and 8 | L. Further let r, s, k, t be non-zero integers satisfying the

equations

r2 − Ls2 = 1

and

k2 − (L + 16) t2 = 1.

Then the sequences H = H (2r,−1, 0, s) and K = K (2k,−1, 0, t) apart from the

zero initial terms, have at most 2 common terms.

Proof. The proof is based on the proof of the Theorem 1.
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Remarks

1. Let D be a positive integer which is not a perfect square. Pell’s equation

x2 − Dy2 = 1

has infinitely many integer solutions pairs of (x, y). It can be seen that there
are infinitely many a, b, c, d or r, s, k, t integers for which our conditions hold.

2. If L = 8, then J. Binz’s theorem follows from the Theorem 3. In this case
we can determine the common terms of the sequences G(6,−1, 0, 6) and
H(10,−1, 0, 10).

3. In particular, it would be interesting to prove a similar result for any sequence
of G(A, B, G0, G1) and H(C, D, H0, H1) for which there are finitely many
common terms. But the upper bound of the common terms would be too
large.
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