KREIN SPACE NUMERICAL RANGES: COMPRESSIONS AND DILATIONS

N. BEBIANO¹* AND J. DA PROVIDÊNCIA²

Dedicated to Professor T. Ando, in recognition of his outstanding mathematical achievements

Communicated by K. S. Berenhaut

Abstract. A criterion for the numerical range of a linear operator acting in a Krein space to be a two-component hyperbolical disc is given, using the concept of support function. A characterization of the Krein space numerical range as a union of hyperbolical discs is obtained by a reduction to the two-dimensional case. We revisit a famous result of Ando concerning the inclusion relation \(W(A) \subseteq W(B) \) of the numerical ranges of two operators \(A \) and \(B \) acting in (possibly different) Hilbert spaces, and the condition that \(A \) can be dilated to an operator of the form \(B \otimes I \). The extension of this result to operators acting in Krein spaces is investigated.

1 CMUC, University of Coimbra, Department of Mathematics, P 3001-454 Coimbra, Portugal.
E-mail address: bebiano@mat.uc.pt

2 CFC, University of Coimbra, Department of Physics, P 3004-516 Coimbra, Portugal.
E-mail address: providencia@teor.fis.uc.pt

Date: Received: 17 May 2013; Accepted: 6 June 2013.
* Corresponding author.

2010 Mathematics Subject Classification. Primary 15A60; Secondary 46C20, 15A63.

Key words and phrases. Krein space, indefinite inner product space, numerical range, compression, dilation.