AN EXTENSION THEOREM
FOR SUPERTEMPERATURES

Neil A. Watson
University of Canterbury, Department of Mathematics and Statistics
Private Bag, Christchurch, New Zealand; n.watson@math.canterbury.ac.nz

Abstract. We present an analogue for supertemperatures of a well-known extension theorem on superharmonic functions.

1. Introduction

We call solutions of the heat equation temperatures, and the corresponding supersolutions supertemperatures. See [4] and [5] for details. The purpose of this paper is to present an analogue for supertemperatures of the following superharmonic function extension theorem.

Let K be a compact subset of \mathbb{R}^n such that $\mathbb{R}^n \setminus K$ is connected. If u is superharmonic on some open superset of K, then there exists a superharmonic function \bar{u} on \mathbb{R}^n such that $\bar{u} = u$ on a neighbourhood of K.

This result can be found in [1], p. 192.

For the case of supertemperatures on open subsets of \mathbb{R}^{n+1}, the condition that the complement of K be connected is still necessary, but is no longer sufficient, as the following example shows.

We need some notation. If $p = (x, t)$ and $p_0 = (x_0, t_0)$ are two points in $\mathbb{R}^n \times \mathbb{R}$, we put

$$W(p_0, p) = (4\pi(t_0 - t))^{-\frac{n}{2}} \exp\left(-\frac{\|x_0 - x\|^2}{4(t_0 - t)}\right)$$

if $t_0 > t$, and $W(p_0, p) = 0$ if $t_0 \leq t$.

Example. Let

$$K = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} : \|x\|^2 + t^2 = 1, t \leq 1/2\}$$

be the part of boundary of the unit ball (centred at the origin) where $t \leq 1/2$. Put

$$u(p) = -W(p, 0) \quad \text{for all} \quad p \in \mathbb{R}^{n+1}.$$

Then u is a temperature on $\mathbb{R}^{n+1} \setminus \{0\}$, which is an open superset of K. Suppose that there is a supertemperature \bar{u} on \mathbb{R}^{n+1} such that $\bar{u} = u$ on an open superset D.
of K. Then the function $v = \bar{u} - u$ is a supertemperature on \mathbb{R}^{n+1}, and is identically zero on D. Consider v on the set

$$E = \{(x,t) \in \mathbb{R}^{n+1} : \|x\|^2 + t^2 < 1, t < 1/2\}.$$

Since $v \equiv 0$ on K, the boundary minimum principle shows that $v \geq 0$ on E. Since D is an open superset of K, we can find a point $p_0 = (x_0, t_0) \in E$ such that $v(p_0) = 0$ and $t_0 > 0$. Now the strong minimum principle implies that $v \equiv 0$ on $E_0 = \{(x,t) \in E : t < t_0\}$, an open set containing the origin. So $\bar{u} = u$ on E_0. But \bar{u} is bounded below on E_0, whereas u is unbounded below, so we have a contradiction.

Before describing our theorem, we collect together the various pieces of notation needed for the remainder of this note. See [4] and [5] for details of these concepts.

The heat ball $\Omega(p_0; c)$ is defined for $c > 0$ by

$$\Omega(p_0; c) = \{p \in \mathbb{R}^{n+1} : W(p_0, p) > (4\pi c)^{-\frac{n}{2}}\}.$$

We shall write $\tau(c)$ for $(4\pi c)^{-\frac{n}{2}}$. We shall use the characteristic surface mean values of supertemperatures. For each $x \in \mathbb{R}^n$ and $t > 0$, we put

$$Q(x,t) = \|x\|^2(4\|x\|^2 t^2 + (\|x\|^2 - 2nt)^2)^{-1/2}.$$

Then the mean value is defined by

$$\mathcal{M}(u; x_0, t_0; c) = \tau(c) \int_{\partial \Omega(x_0, t_0; c)} Q(x_0 - x, t_0 - t) u(x, t) \, d\sigma$$

for any function u such that the integral exists. Here σ denotes surface area measure.

If E is an open set in \mathbb{R}^{n+1} and $p_0 \in E$, we denote by $\Lambda(p_0, E)$ (respectively $\Lambda^*(p_0, E))$ the set of all points $p \in E \setminus \{p_0\}$ that can be joined to p_0 by a polygonal line in E along which the temporal variable t is strictly increasing (respectively decreasing) as the line is described from p to p_0. In particular, if $B = B(p_0, r)$ is an open ball with centre $p_0 = (x_0, t_0)$ and radius $r > 0$, then $\Lambda(p_0, B)$ is the open half-ball

$$\{(x,t) : \|x - x_0\|^2 + (t - t_0)^2 < r^2, t < t_0\}.$$

Furthermore, $\Lambda^*(p_0, \mathbb{R}^{n+1}) = \mathbb{R}^n \times [t_0, \infty[.$

If $q \in \partial E$, and there is an open ball $B = B(q, \epsilon)$ such that $\Lambda(q, B) \subseteq E$, we call q an abnormal boundary point of E, and write $q \in \text{ab}(\partial E)$. If ϵ can be chosen so that $\Lambda(q, B) = B \cap E$, then we call q an abnormal boundary point of the first kind, and write $q \in \text{ab}_1(\partial E)$. Otherwise, we call q an abnormal boundary point of the second kind, and write $q \in \text{ab}_2(\partial E)$. We also put $\text{n}(\partial E) = (\partial E) \setminus \text{ab}(\partial E)$, and call its elements normal boundary points of E. The set $\text{ess}(\partial E)$, defined by $\text{ess}(\partial E) = \text{n}(\partial E) \cup \text{ab}_2(\partial E)$, is called the essential boundary of E, and is the part of the boundary that is relevant when using the minimum principle, or when considering the Dirichlet problem.

The definition of $\Lambda(p_0, E)$ can be extended in an obvious way to the case where $p_0 \in \text{ab}(\partial E)$. The definition of $\Lambda^*(p_0, E)$ can be extended in a similar way.

If E is a bounded open set, and f is a continuous real-valued function on $\text{ess}(\partial E)$, then there is a unique temperature on E that is associated to f by the PWB method.
It is denoted by H^E_f, and is called the Dirichlet solution for f on E. We use the concept of Dirichlet solution in [5] because we need it to be aligned with the strongest form of the boundary minimum principle, also given in [5].

2. The theorem

So a stronger condition than the connectedness of $\mathbb{R}^{n+1}\setminus K$ is required in the present case. To motivate our condition, we first re-write the condition of connectedness of $\mathbb{R}^n\setminus K$ for the superharmonic case. Given x_0 in an open set D, let $\Gamma(x_0, D)$ denote the component of D that contains x_0. Then obviously $K \subseteq \mathbb{R}^n = \Gamma(x_0, \mathbb{R}^n)$, and $\mathbb{R}^n\setminus K$ is connected if and only if there is a point $x_0 \in \mathbb{R}^n\setminus K$ such that $\Gamma(x_0, \mathbb{R}^n\setminus K) = \Gamma(x_0, \mathbb{R}^n)\setminus K$.

Replacing Γ by Λ^* (introduced above), we get the required condition.

Definition. Let K be a compact subset of \mathbb{R}^{n+1}. If there is a point p_0 in $\mathbb{R}^{n+1}\setminus K$ such that $K \subseteq \Lambda^*(p_0, \mathbb{R}^{n+1})$ and $\Lambda^*(p_0, \mathbb{R}^{n+1}\setminus K) = \Lambda^*(p_0, \mathbb{R}^{n+1})\setminus K$, then we say that $\mathbb{R}^{n+1}\setminus K$ is monotonically connected to p_0.

In general, if $p \in \Lambda^*(p_0, \mathbb{R}^{n+1}\setminus K)$, then $p \in \mathbb{R}^{n+1}\setminus K$ and can be joined to p_0 by a polygonal path in $\mathbb{R}^{n+1}\setminus K$ along which the temporal variable is strictly decreasing. So $p \in \Lambda^*(p_0, \mathbb{R}^{n+1})\setminus K$, and we have the inclusion

$$\Lambda^*(p_0, \mathbb{R}^{n+1}\setminus K) \subseteq \Lambda^*(p_0, \mathbb{R}^{n+1})\setminus K.$$

Equality may fail to hold. If K is as in the above Example, and p_0 is any point such that $K \subseteq \Lambda^*(p_0, \mathbb{R}^{n+1})$, then

$$\Lambda^*(p_0, \mathbb{R}^{n+1}\setminus K) = \Lambda^*(p_0, \mathbb{R}^{n+1})\setminus \bar{E} \subseteq \Lambda^*(p_0, \mathbb{R}^{n+1})\setminus K.$$

Hence $\mathbb{R}^{n+1}\setminus K$ is not monotonically connected to any point p_0.

Theorem. Let K be a compact subset of an open set E.

(a) If $\mathbb{R}^{n+1}\setminus K$ is monotonically connected to some point, then for each supertemperature u on E there is a lower bounded supertemperature \bar{u} on \mathbb{R}^{n+1} such that $\bar{u} = u$ on a neighbourhood U of K. Furthermore, \bar{u} can be chosen to be the potential of a measure supported in \bar{U}, plus a constant.

(b) If $\mathbb{R}^{n+1}\setminus K$ is not monotonically connected to any point, then there exists a temperature u on E for which there is no supertemperature \bar{u} on \mathbb{R}^{n+1} that coincides with u on a neighborhood of K.

Proof. We begin with (b). Suppose that $\mathbb{R}^{n+1}\setminus K$ is not monotonically connected to any point. Choose a point p_0 such that $K \subseteq \Lambda^*(p_0, \mathbb{R}^{n+1})$. There is some point $p_1 \in \Lambda^*(p_0, \mathbb{R}^{n+1})\setminus K$ that does not belong to $\Lambda^*(p_0, \mathbb{R}^{n+1}\setminus K)$, and so the same is true of every point in the set $S = \Lambda(p_1, \mathbb{R}^{n+1}\setminus K)$. Choose a point $p^* \in S$, and put $u = -W(\cdot, p^*)$ on \mathbb{R}^{n+1}. Then, in particular, u is a temperature on the open superset $\mathbb{R}^{n+1}\setminus \{p^*\}$ of K. Suppose that there is a supertemperature \bar{u} on \mathbb{R}^{n+1} such that $\bar{u} = u$ on an open superset D of K. Note that, by [5] Lemma 1, $\text{ess}(\partial S) \subseteq \text{ess}(\partial(\mathbb{R}^{n+1}\setminus K)) \subseteq \partial(\mathbb{R}^{n+1}\setminus K) = \partial K \subseteq D$.

Neil A. Watson

The function \(v = \bar{u} - u \) is a supertemperature on \(\mathbb{R}^{n+1} \) and identically zero on \(D \).
Since \(\text{ess}(\partial S) \subseteq D \), it follows from the minimum principle that \(v \geq 0 \) on \(S \).
Since \(D \) is an open superset of \(K \), for each point \(p \in S \) there is a point \(p' \in A^*(p, S) \cap D \).
Since \(v(p') = 0 \), the strong minimum principle shows that \(v(p) = 0 \) also.
So \(\bar{u} = u \) on \(S \), which is impossible because \(u \) is unbounded below on any neighbourhood of \(p^* \), and the supertemperature \(\bar{u} \) is locally bounded below on \(\mathbb{R}^{n+1} \).
So such a function \(\bar{u} \) cannot exist if \(\mathbb{R}^{n+1} \setminus K \) is not monotonically connected to any point.

The proof of part (a) of the Theorem requires several lemmas. The first of these requires the concept of a block set.

3. Block sets

Definition. An open set \(B \) in \(\mathbb{R}^{n+1} \) will be called a block set if it can be written as a union
\[
B = \bigcup_{i=1}^{m} R_i
\]
of finitely many open rectangles. (By a rectangle we mean an \((n+1)\)-dimensional interval.)

Note that, if \(B \) is a block set and \(R \) is a rectangle, then \(B \setminus \bar{R} \) is also a block set.
To see this, first choose an open rectangle \(X \) which contains \(B \cup \bar{R} \). Then \(X \setminus \bar{R} \) is a block set, because
\[
X = \prod_{i=1}^{n+1} [x_i, y_i], \quad \bar{R} = \prod_{i=1}^{n+1} [a_i, b_i], \quad x_i < a_i < b_i < y_i
\]
implies that (with a slight abuse of notation)
\[
X \setminus \bar{R} = \bigcup_{k=1}^{n+1} \left(\left(\prod_{i \neq k} [x_i, y_i] \times]a_k, b_k[\right) \bigcup \left(\prod_{i \neq k} [x_i, y_i] \times]b_k, y_k[\right) \right).
\]
Now \(B \setminus \bar{R} = B \cap (X \setminus \bar{R}) \) is an intersection of two block sets, which is itself a block set; because if
\[
B = \bigcup_{i=1}^{m} R_i \quad \text{and} \quad X \setminus \bar{R} = \bigcup_{j=1}^{q} S_j,
\]
then
\[
B \setminus \bar{R} = \left(\bigcup_{i=1}^{m} R_i \right) \cap \left(\bigcup_{j=1}^{q} S_j \right) = \bigcup_{i=1}^{m} \bigcup_{j=1}^{q} (R_i \cap S_j),
\]
and \(R_i \cap S_j \) is a rectangle (or empty) for every \(i \) and \(j \).

It follows that, if \(B \) and \(C \) are both block sets, then \(B \setminus \bar{C} \) is also a block set.

In the proof of the superharmonic case given in [1], the relative complement \(E \setminus K \) of a compact set \(K \) in an open set \(E \), is approximated from within by Dirichlet regular sets. This technique is not available in the present case, and instead we approximate \(K \) from without by the closures of block sets. We need to be able to
do this in such a way that, if \(\mathbb{R}^{n+1} \setminus K \) is monotonically connected to a point \(p_0 \), then the approximating block sets are too. This is the purpose of our first lemma.

Lemma 1. Let \(E \) be an open set in \(\mathbb{R}^{n+1} \), and let \(K \) be a compact subset of \(E \). Then there is a block set \(B \) such that \(K \subseteq B \subseteq E \). Furthermore, if \(\mathbb{R}^{n+1} \setminus K \) is monotonically connected to some point \(p_0 \in \mathbb{R}^{n+1} \setminus K \), then \(B \) can be chosen so that \(\mathbb{R}^{n+1} \setminus B \) is also monotonically connected to \(p_0 \).

Proof. Since \(K \) is a compact subset of the open set \(E \), we can cover it with finitely many open rectangles whose closures lie in \(E \). The union \(B \) of these rectangles is a block set such that \(K \subseteq B \) and \(B \subseteq E \).

If \(\mathbb{R}^{n+1} \setminus K \) is monotonically connected to \(p_0 \), then the above choice of \(B \) may not suffice to make \(\mathbb{R}^{n+1} \setminus B \) monotonically connected to \(p_0 \). Suppose that there are points \(p_\alpha \) in \(\Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus B) \) that do not belong to \(\Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus K) \). Since \(\mathbb{R}^{n+1} \setminus K \) is monotonically connected to \(p_0 \), we have \(p_\alpha \in \Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus K) \), so that there is a polygonal path from \(p_\alpha \) to \(p_0 \) in \(\mathbb{R}^{n+1} \setminus K \) along which time is strictly decreasing. But \(p_\alpha \) does not belong to \(\Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus B) \), so any such path must meet \(B \). Let \(\Gamma(p_\alpha, p_0) \) denote the family of all such paths from \(p_\alpha \) to \(p_0 \). Then every \(\gamma \in \Gamma(p_\alpha, p_0) \) meets \(B \), and there exists

\[
t_{\alpha, \gamma} = \max\{t : (x, t) \in \gamma \cap \bar{B}\}.
\]

Put

\[
t_\alpha = \inf\{t_{\alpha, \gamma} : \gamma \in \Gamma(p_\alpha, p_0)\}.
\]

Because \(B \) is a block set, the infimum is attained. Choose a path \(\delta \in \Gamma(p_\alpha, p_0) \) such that \(t_{\alpha, \delta} = t_\alpha \) and the point \(q_\alpha = (y_\alpha, t_\alpha) \in \delta \cap \bar{B} \) is in the relative interior of \((\mathbb{R}^n \times \{t_\alpha\}) \cap \partial B \). Then \(\Lambda^\ast(q_\alpha, \mathbb{R}^{n+1} \setminus B) \) is defined and contains \(p_\alpha \). Put

\[
I(q_\alpha) = \Lambda^\ast(q_\alpha, \mathbb{R}^{n+1} \setminus B) \setminus \Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus B),
\]

which is nonempty because it contains \(p_\alpha \).

Take another point \(q_\beta \), chosen in the same way relative to another point \(p_\beta \) in \(\Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus B) \) that does not belong to \(\Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus B) \). If \(q_\alpha \) and \(q_\beta \) belong to the same component of \((\mathbb{R}^n \times \{t\}) \cap \partial B \) for some \(t \), then \(I(q_\alpha) = I(q_\beta) \). Since \(B \) is a block set, there are only finitely many different values of \(t \) for which \(\mathbb{R}^n \setminus \{t\} \) contains some \(q_\alpha \), and each \((\mathbb{R}^n \times \{t\}) \cap \partial B \) has only finitely many components. So there are only finitely many distinct sets \(I(q_\alpha) \). We choose a unique point \(q_k \) to represent each distinct set \(I(q_k) \), and thus obtain a finite set \(\{q_1, \ldots, q_m\} \) such that

\[
(\Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus \bar{B})) \setminus \Lambda^\ast(p_0, \mathbb{R}^{n+1} \setminus \bar{B}) \subseteq \bigcup_{k=1}^m \Lambda^\ast(q_k, \mathbb{R}^{n+1} \setminus \bar{B}).
\]

Since \(q_k \in \mathbb{R}^{n+1} \setminus K \) for \(k \in \{1, \ldots, m\} \), and \(\mathbb{R}^{n+1} \setminus K \) is monotonically connected to \(p_0 \), we can choose a polygonal path \(\gamma_k \) that connects \(q_k \) to \(p_0 \) along which the temporal variable is strictly decreasing. Since \(\bigcup_{k=1}^m \gamma_k \) is compact, we can cover it with finitely many open rectangles whose closures do not intersect \(K \). Let \(U \) denote
the union of the closures of these rectangles. Now $B \setminus U$ is a block set containing K, and $\mathbb{R}^{n+1} \setminus (B \setminus U)$ is monotonically connected to p_0. □

4. Preliminary extension lemmas

The remaining lemmas are all relatively minor extension results. The first is the direct analogue of a result in [1], p. 66.

Lemma 2. Let v be a supertemperature on an open set E, and let h be a supertemperature on an open subset D of E. If

$$(1) \liminf_{p \to q, p \in D} h(p) \geq v(q) \quad \text{for all } q \in E \cap \partial D,$$

and w is defined on E by

$$w(p) = \begin{cases} (h \wedge v)(p) & \text{if } p \in D, \\ v(p) & \text{if } p \in E \setminus D, \end{cases}$$

then w is a supertemperature on E.

Proof. It is clear that w is a supertemperature on $E \setminus \partial D$, that $w(p) > -\infty$ for all $p \in E$, and that $w < +\infty$ on a dense subset of E. Condition (1) ensures that, for each point $q \in E \cap \partial D$,

$$\liminf_{p \to q} w(p) = \min \left\{ \liminf_{p \to q} h(p), \liminf_{p \to q} v(p) \right\} \geq v(q) = w(q),$$

so that w is lower semicontinuous on E. It remains to check that the supertemperature mean value inequality is satisfied at points of $E \cap \partial D$. If $q \in E \cap \partial D$ and $\Omega(q; c) \subseteq E$, then

$$w(q) = v(q) \geq \mathcal{M}(v; q, c) \geq \mathcal{M}(w; q, c).$$

Hence w is a supertemperature on E, by [4] Theorem 15. □

In practice, condition (1) is rarely satisfied when $q \in \text{ab}(\partial D)$, and this limits the usefulness of Lemma 2. We need a substitute result for the case where $D = E \setminus \bar{T}$ with T a block set such that $\bar{T} \subseteq E$. In this case, the set of all horizontal edges of T contains $E \cap \text{ab}_2(\partial D)$, and is a closed polar set, in view of [5], p. 280.

Lemma 3. Let E be an open set, let T be a block set such that $\bar{T} \subseteq E$, and let $D = E \setminus \bar{T}$. Let v be a supertemperature on E, and let h be a supertemperature on D. If

$$(2) \liminf_{p \to q, p \in D} h(p) \geq v(q) \quad \text{for all } q \in E \cap \text{int}(\partial D),$$

$$(3) \liminf_{p \to q, p \in D} h(p) > -\infty \quad \text{for all } q \in E \cap \text{ab}(\partial D),$$

and

$$(4) \liminf_{p \to q, p \in D} h(p) \leq v(q) \quad \text{for all } q \in E \cap \text{ab}_1(\partial D),$$

then w is a supertemperature on E. □
then the function \(w \), defined on \(E \backslash ab_2(\partial D) \) by

\[
w(q) = \begin{cases}
(h \wedge v)(q) & \text{if } q \in D, \\
\liminf_{p \to q, p \in D} h(p) & \text{if } q \in E \cap ab_1(\partial D), \\
v(q) & \text{if } q \in E \backslash (D \cup ab(\partial D)),
\end{cases}
\]

has a unique extension to a supertemperature on \(E \).

Proof. Let \(Z \) denote the closed set of all horizontal edges of \(T \). Then \(E \cap ab_2(\partial D) \subseteq Z \). Clearly \(w \) is a supertemperature on \(E \backslash \partial D \), and \(w > -\infty \) on \(E \backslash ab_2(\partial D) \), which contains \(E \backslash Z \). Furthermore, because \(T \) is a block set, \(E \cap ab(\partial D) \) is contained in the union of a finite set of hyperplanes of the form \(\mathbb{R}^n \times \{ t \} \), and so \(w < +\infty \) on a dense subset of \(E \).

Next we check the lower semicontinuity. If \(q \in E \cap n(\partial D) \), then

\[
\liminf_{p \to q} w(p) = \min \left\{ \liminf_{p \to q, p \in D} h(p), \liminf_{p \to q} v(p) \right\} \geq v(q) = w(q),
\]

in view of (2). If \(q \in E \cap ab_1(\partial D) \), then condition (4) and [5] Lemma 12 imply that

\[
\liminf_{p \to q, p \in D} h(p) \leq \liminf_{p \to q} v(p),
\]

so that

\[
\liminf_{p \to q} w(p) = \min \left\{ \liminf_{p \to q, p \in D} h(p), \liminf_{p \to q} v(p) \right\} = \liminf_{p \to q, p \in D} h(p) = w(q).
\]

Hence \(w \) is lower semicontinuous on \(E \backslash ab_2(\partial D) \), and in particular on \(E \backslash Z \).

We now check that the supertemperature mean value inequality is satisfied at every point of \(E \cap (\partial D \backslash ab_2(\partial D)) \). Because \(T \) is a block set, \(E \cap ab(\partial D) \) is contained in the union of a finite collection of hyperplanes of the form \(\mathbb{R}^n \times \{ t \} \). Therefore, if \(q \in E \cap n(\partial D) \) we have \(\Omega(q; c) \subseteq E \backslash ab(\partial D) \) for all sufficiently small values of \(c \). For those values,

\[
w(q) = v(q) \geq \mathcal{M}(v; q, c) \geq \mathcal{M}(w; q, c).
\]

On the other hand, if \(q \in E \cap ab_1(\partial D) \), then condition (3) implies that \(w \) is bounded below on some open rectangle \(R \) such that \(q \in ab(\partial R) \). Therefore we can use condition (4), Fatou’s Lemma, and the lower semicontinuity of \(h \wedge v \), to obtain

\[
w(q) = \liminf_{p \to q, p \in D} h(p) \geq \liminf_{p \to q, p \in D} (h \wedge v)(p) \geq \liminf_{p \to q, p \in D} \mathcal{M}(h \wedge v; p, c)
\]

\[
\geq \mathcal{M}(h \wedge v; q, c) = \mathcal{M}(w; q, c)
\]

for all sufficiently small values of \(c \). It follows from [4], Theorem 15, that \(w \) is a supertemperature on \(E \backslash Z \).

Since \(Z \) is a closed polar subset of \(E \), we have only to show that \(w \) is locally bounded below on \(E \) and apply [5], Theorem 29, to complete the proof. Clearly \(w \) is bounded below on compact subsets of \(E \backslash \partial D \). Condition (3) (along with the lower finiteness of \(v \)) implies that \(w \) is bounded below on some neighbourhood of
any \(q \in E \cap \text{ab}(\partial D) \), and condition (2) has a similar implication for \(q \in E \cap \text{n}(\partial D) \). So \(w \) is locally bounded below on \(E \), and the result follows. \(\square \)

In the proof of our theorem, we first extend the given supertemperature to a set of the form
\[
\Omega^*(p_0; c) = \{ p \in \mathbb{R}^{n+1} : W(p, p_0) > \tau(c) \},
\]
which is the reflection of \(\Omega(p_0; c) \) in the hyperplane \(\mathbb{R}^n \times \{t_0\} \), if \(p_0 = (x_0, t_0) \). The following lemma then gives an extension to the whole of \(\mathbb{R}^{n+1} \).

Lemma 4. Let \(u \) be a supertemperature on \(\Omega^* = \Omega^*(p^*; c^*) \), and let \(S \) be an open set such that \(\bar{S} \subseteq \Omega^* \). Then there is a supertemperature \(\bar{u} \) on \(\mathbb{R}^{n+1} \), such that \(\bar{u} = u \) on \(S \) and \(\bar{u} \) is lower bounded on \(\mathbb{R}^{n+1} \).

Proof. Let \(p^* = (x^*, t^*) \), and choose \(t_1 > t^* \) such that \(\bar{S} \subseteq \mathbb{R}^n \times [t_1, \infty[\). Choose \(\gamma < c^* \) such that \(\bar{S} \subseteq \Omega^*(p^*; \gamma) \), and put \(\Omega^1_\gamma = \Omega^*(p^*; \gamma) \cap (\mathbb{R}^n \times [t_1, \infty[) \). Then \(\Omega^1_\gamma \) is a compact subset of \(\Omega^* \), so that we can find \(k \in \mathbb{R} \) such that \(u > k \) on \(\Omega^1_\gamma \). Let \(R^S_{\bar{u} - k} \) be the reduction of \(u - k \) relative to \(S \) in \(\Omega^1_\gamma \) (see [2] for details about reductions), and put

\[
u_1 = R^S_{\bar{u} - k} + k \quad \text{on} \quad \Omega^1_\gamma.
\]

Then \(u_1 \) is a supertemperature on \(\Omega^1_\gamma \), \(u_1 \) is a temperature on \(\Omega^1_\gamma \backslash \bar{S} \), \(k \leq u_1 \leq u \) on \(\Omega^1_\gamma \), and \(u_1 = u \) on \(S \).

Choose \(\alpha \) and \(\beta \) such that \(0 < \alpha < \beta < \gamma \) and \(\bar{S} \subseteq \Omega^*(p^*; \alpha) \). Put \(\Omega^*(\alpha) = \Omega^*(p^*; \alpha) \), and \(\Omega^1_\alpha(\alpha) = \Omega^*(\alpha) \cap (\mathbb{R}^n \times [t_1, \infty[) \); similarly for \(\beta \). Since \(u_1 \) is continuous on \(\Omega^1_\gamma \backslash \bar{S} \), it has a maximum value \(M(\alpha) \geq k \) on \(\partial \Omega^*(\alpha) \cap (\mathbb{R}^n \times [t_1, \infty[) \). Define \(u_2 \) on \(\mathbb{R}^{n+1} \) by putting

\[
u_2(p) = \frac{M(\alpha) - k}{\tau(\alpha) - \tau(\beta)}(W(p, p^*) - \tau(\beta)) + k.
\]

Then \(u_2 \) is a supertemperature, \(u_2 = M(\alpha) \) on \(\partial \Omega^*(\alpha) \backslash \{p^*\} \), and \(u_2 = k \) on \(\partial \Omega^*(\beta) \backslash \{p^*\} \). Now define \(u_3 \) on \(\mathbb{R}^n \times [t_1, \infty[\) by

\[
u_3 = \begin{cases} u_1 & \text{on} \quad \Omega^*(\alpha) \cap (\mathbb{R}^n \times [t_1, \infty[), \\ u_1 \wedge u_2 & \text{on} \quad \Omega^1_\beta(\alpha), \\ u_2 & \text{on} \quad (\mathbb{R}^n \times [t_1, \infty[) \backslash \Omega^1_\beta. \end{cases}
\]

We apply Lemma 2 with \(E = \Omega^1_\beta, v = u_1, D = \Omega^1_\beta \backslash \Omega^1_\alpha, \) and \(h = u_2 \), noting that for all \(q \in E \cap \partial D = \bar{\Omega}^1_\beta(\beta) \cap \partial \Omega^1_\alpha(\alpha) \) we have

\[
\lim \inf_{p \to q, p \in D} h(p) \geq u_2(q) = M(\alpha) \geq u_1(q) = v(q).
\]

Thus \(u_3 \) is a supertemperature on \(\Omega^1_\beta(\beta) \).

A second application of Lemma 2, this time with \(E = (\mathbb{R}^n \times [t_1, \infty[) \backslash \Omega^1_\alpha(\alpha) \), \(v = u_2, D = \Omega^1_\beta \backslash \Omega^1_\alpha, \) and \(h = u_1 \), so that for all \(q \in E \cap \partial D = (\mathbb{R}^n \times [t_1, \infty[) \cap \partial \Omega^1_\beta(\beta) \) we have

\[
\lim \inf_{p \to q, p \in D} h(p) \geq u_1(q) \geq k = u_2(q) = v(q).
\]
the whole of \((R^n \times [t_1, \infty[) \setminus \Omega^*_1(\alpha)\), and therefore on the whole of \((R^n \times [t_1, \infty[)\).

Since \(u_1 \geq k\) on \(\Omega^*_1(\gamma)\), and

\[
u_2 \geq \frac{M(\alpha) - k}{\tau(\alpha) - \tau(\beta)} (-\tau(\beta)) + k = \frac{-\tau(\beta)M(\alpha) + \tau(\alpha)k}{\tau(\alpha) - \tau(\beta)}
\]
on \(R^{n+1}\), \(u_3\) is lower bounded. Putting

\[
\bar{u} = \begin{cases} u_3 & \text{on } R^n \times [t_1, \infty[, \\ \inf u_3 & \text{on } R^n \times [\infty, t_1], \end{cases}
\]

we obtain a lower bounded supertemperature \(\bar{u}\) on \(R^{n+1}\) such that \(\bar{u} = u_3 = u_1 = u\) on \(S\).

5. Proof of part (a) of the theorem

Let \(K\) be a compact subset of an open set \(E\). We must prove the following statement:

If \(R^{n+1} \setminus K\) is monotonically connected to some point \(p_0\), then for each supertemperature \(u\) on \(E\) there is a lower bounded supertemperature \(\bar{u}\) on \(R^{n+1}\) such that \(\bar{u} = u\) on a neighbourhood \(U\) of \(K\). Furthermore, \(\bar{u}\) can be chosen to be the potential of a measure supported in \(U\), plus a constant.

Proof. We may suppose that \(E\) is bounded, and that \(u > 0\) on \(E\).

By Lemma 1, we can find an open (block) set \(S\) such that \(K \subseteq S\), \(\bar{S} \subseteq E\), and \(R^{n+1} \setminus \bar{S}\) is monotonically connected to \(p_0\). Let \(v = R^S_0\), the reduction of \(u\) relative to \(S\) in \(E\). Then \(v\) is a supertemperature on \(E\), \(v\) is a temperature on \(E\setminus\bar{S}\), \(0 \leq v \leq u\) on \(E\), and \(v = u\) on \(S\). Using Lemma 1 again, we can find a block set \(T\) such that \(\bar{S} \subseteq T\), \(T \subseteq E\), and \(R^{n+1}\setminus\bar{T}\) is monotonically connected to \(p_0\). Choose \(p^* \in R^{n+1}\) and \(c^* > 0\) such that \(E \cup \{p_0\} \subseteq \Omega(p^*; c^*)\), and put \(\Omega^* = \Omega(p^*; c^*)\), \(A = \Omega^* \setminus \bar{T}\). We shall extend \(u\) to a supertemperature on \(\Omega^*\), then use Lemma 4 to further extend \(u\) to \(R^{n+1}\).

Put \(g_1 = v\) on \(\partial T\), \(g_1 = 0\) on \(\partial \Omega^*\), \(g_2 = 0\) on \(\partial T\), and \(g_2 = 1\) on \(\partial \Omega^*\). Define

\[
h_k = H^A_{g_1} - kH^A_{g_2} \quad \text{for all } k \in N.
\]

Note that \(v\) is continuous on \(\partial T\), because \(v\) is a temperature on \(E\setminus\bar{S}\). For each point \((x, t) \in A\) such that \(t < \min\{s : (y, s) \in \bar{T}\}\), we have \(H^A_{g_2}(x, t) = 1\) because \(g_2 = 1\) on \(\partial \Omega^*\). In particular, \(H^A_{g_2}(p_0) = 1\). Since \(R^{n+1}\setminus\bar{T}\) is monotonically connected to \(p_0\), for all \(p \in \Lambda(p_0, R^{n+1})\setminus\bar{T}\) we have \(p_0 \in \Lambda(p, R^{n+1})\setminus\bar{T}\), and therefore \(p_0 \in \Lambda(p, A)\) if \(p \in A\). Therefore, by the strong minimum principle, \(H^A_{g_2} > 0\) on \(A\), so that \(\{h_k\}\) decreases to \(-\infty\) on \(A\) as \(k \to \infty\).

Our method of extending \(u\) to \(\Omega^*\) requires that \(h_j \leq v\) on \(E\setminus\bar{T}\) for some \(j\). Because \(\{h_k\}\) decreases to \(-\infty\) on \(A\), we can find \(j\) such that \(h_j \leq 0\) on \(\partial E\).
Therefore, for all $q \in \partial E$ we have
\[
\liminf_{p \to q, \ p \in E} v(p) \geq h_j(q) = \lim_{p \to q} h_j(p).
\]
Consider the points of ∂T as boundary points in the Dirichlet problem on A. Because T is a block set, all points of $\partial T \cap n(\partial A)$ are regular, by the parabolic tusk test in [3]. All points of $\partial T \cap ab_1(\partial A)$ can be ignored, because they are irrelevant to both the Dirichlet problem on A and the use of the minimum principle on A. Again because T is a block set, all points of $\partial T \cap ab_2(\partial A)$ are contained in the union of finitely many sets of the form $\{(x_1, \ldots, x_n, t) : t = a, x_j = b \text{ for some } j\}$, each of which is polar by [5], p. 280. So $\partial T \cap ab_2(\partial A)$ is also polar. It follows that
\[
\lim_{p \to q, \ p \in A} h_j(p) = v(q) = \lim_{p \to q, \ p \in \bar{T}} v(p),
\]
for all $q \in \partial T \cap \text{ess}(\partial A) \setminus Z$ for some polar set Z. Furthermore, because $g_1 \leq \max_{\partial T} v$ and $g_2 \geq 0$ on ∂A, we have $h_j \leq \max_{\partial T} v$ on A, so that $v - h_j$ is lower bounded on $E \setminus \bar{T}$. Applying the minimum principle in [5], p. 284, to $v - h_j$ on $E \setminus \bar{T}$, we obtain $v \geq h_j$.

We now put $D = E \setminus \bar{T}$ and apply Lemma 3 with $h = h_j$, noting that
\[
\lim_{p \to q, \ p \in D} h_j(p) = v(q) \quad \text{for all} \quad q \in E \cap n(\partial D),
\]
because $E \cap n(\partial D) = \partial T \cap n(\partial A)$ and all such points are regular;
\[
\liminf_{p \to q, \ p \in D} h_j(p) > -\infty \quad \text{for all} \quad q \in E \cap \text{ab}(\partial D)
\]
because $h_j \geq -\gamma$ on A; and
\[
\liminf_{p \to q, \ p \in D} h_j(p) \leq v(q) \quad \text{for all} \quad q \in E \cap \text{ab}_1(\partial D)
\]
because $h_j \leq v$ on D, v is continuous on ∂T, and $\text{ab}_1(\partial D) \cap E = \text{ab}_1(\partial D) \cap \partial T$. Thus we see that the function w, defined by
\[
w = \begin{cases} h_j = h_j \wedge v & \text{on } D = E \setminus \bar{T} \\ v & \text{on } T, \end{cases}
\]
can be extended to a supertemperature \bar{w} on E. Since h_j is a temperature on A, the function \bar{w} can be extended by h_j to a supertemperature on Ω^*.

Next, by Lemma 4, there is a lower bounded supertemperature u_0 on \mathbb{R}^{n+1} such that $u_0 = w = v = u$ on the neighbourhood S of K. Now let U be any open set such that $K \subseteq U \subseteq S$. To show that u_0 can be taken to be the potential of a measure supported in \bar{U}, plus a constant, we first put $m = \inf u_0$ and $u_1 = R_{u_0-m}$, the reduction of $u_0 - m$ relative to U in \mathbb{R}^{n+1}. Since U is open, u_1 is a nonnegative supertemperature on \mathbb{R}^{n+1}, and $u_1 = u_0 - m$ on U. In fact, because \bar{U} is compact, u_1 is a potential by [2], p. 319, (m). Furthermore, u_1 is a temperature on $\mathbb{R}^{n+1} \setminus \bar{U}$, and so its Riesz measure is supported in \bar{U}, by [5] Theorem 20. The function $\bar{u} = u_1 + m$ has the required form.
An extension theorem for supertemperatures

References

Received 8 December 2006