ON FACTORIZATIONS OF ENTIRE FUNCTIONS
OF BOUNDED TYPE

Liang-Wen Liao and Chung-Chun Yang
Nanjing University, Department of Mathematics
Nanjing, China; maliao@nju.edu.cn
The Hong Kong University of Science & Technology
Department of Mathematics Kowloon, Hong Kong; mayang@ust.hk

Abstract. We prove that if f is a transcendental entire function and the set of all finite
singularities of its inverse function f^{-1} is bounded, then $f(z) + P(z)$ is prime for any nonconstant
polynomial $P(z)$, unless $f(z)$ and $P(z)$ has a nonlinear common right factor. Particularly, it is
shown that $f(z) + az$ is prime for any constant $a \neq 0$.

1. Introduction

A transcendental meromorphic function F is said to be prime (pseudo-prime)
if, and only if, whenever $F = f(g)$ for some meromorphic functions f and g, either f or g must be bilinear (rational); F is called left-prime (right-prime) if every
factorization of F implies that f is bilinear whenever g is transcendental (g is
linear if f is transcendental). It is easily seen F is prime if and only if F is left-
prime as well as right-prime. We refer the readers to [3] or [4] for an introduction
to the factorization theory of entire and meromorphic functions.

A point a is called a singularity of f^{-1} (the inverse function of f), if a is
either a critical value or asymptotic value of f. We denote by $\text{sing}(f^{-1})$ the set
of all finite singularities of f^{-1}, i.e.

$$\text{sing}(f^{-1}) = \{z \in \mathbb{C} : z \text{ is a singularity of } f^{-1}\}.$$

We denote by B the class of all entire functions f such that $\text{sing}(f^{-1})$ is bounded
and by S the class of all entire functions f such that $\text{sing}(f^{-1})$ is finite. If $f \in B$
($f \in S$), we say f is of bounded (finite) type.

In 1981, Noda [8] proved the following result.

Theorem A. Let $f(z)$ be a transcendental entire function. Then the set

$$NP(f) = \{a \mid a \in \mathbb{C}, \ f(z) + az \text{ is not prime} \}$$

is at most countable

2000 Mathematics Subject Classification: Primary 30D35.
As a further study on the cardinality of $NP(f)$, which is denoted by $|NP(f)|$, Ozawa and Sawada [9] posed the following interesting question:

Question. Is there any f for which the exceptional set $NP(f)$ in Theorem A is really infinitely countable? Or what is the maximal cardinal number of the exceptional set $NP(f)$?

Theorem B (Ozawa and Sawada [9]). Let $G(w)$ be an entire function satisfying

$$M(R, G(w)) \leq \exp(KR)$$

for $R \geq R_0 > 0$ and for some constant $K > 0$. Then either $G(e^z) + az$ or $G(e^z) + bz$ is prime if $ab(a - b) \neq 0$.

This shows that the cardinality of $NP(G(e^z))$ is at most 2 if $M(R, G(w)) \leq \exp(KR)$ for $R \geq R_0 > 0$ and for some constant $K > 0$. As a study of the above question, Liao–Yang [6] proved the following result.

Theorem C. Let f be a transcendental entire function of finite order in S. Then for any constant $a \neq 0$, $f(z) + az$ is prime, i.e. $|NP(f)| \leq 1$.

Theorem D. Let P, Q be nonconstant polynomials, $\alpha \in B$, h a periodic entire function of order one and mean type, $G(z) = P \circ h \circ \alpha(z)$. If $F(z) = G^n(z) + Q(z)$ has a factorization $F(z) = f(g(z))$, then $g(z)$ must be a common right factor of $\alpha(z)$ and $Q(z)$.

Remark 1. The original statement of Theorem D only requires that h is of order one. Here we would like to point out that h should be at most order one of mean type, as it is needed in the proof of Theorem D, Lemma 5 in [13]. However, f in Lemma 5 should be an entire function of exponential type, i.e. f has order less than one or order one and mean type; see p. 27 in [4].

Remark 2. Let G be defined in Theorem D. Then $G^n(z) + az$ is prime for any constant $a \neq 0$.

As a continuation of the study of our previous work [6], we are able to extend Theorem C to a large class of functions, namely, functions of bounded type. The following is our main result.

Theorem. Let f be a transcendental entire function in B, then for any nonconstant polynomial $P(z)$, $f(z) + P(z)$ is prime unless $f(z)$ and $P(z)$ has a nonlinear common right factor.
2. Some lemmas

Lemma 1 (Rippon and Stallard [11]). Let f be a meromorphic function with a bounded set of all finite critical and asymptotic values. Then there exists $K > 0$ such that if $|z| > K$ and $|f(z)| > K$, then

$$|f'(z)| \geq \frac{|f(z)| \log |f(z)|}{16\pi |z|}.$$

Lemma 2 ([5]). Let f be a transcendental entire function, and $0 < \delta < \frac{1}{4}$. Suppose that at the point z with $|z| = r$ the inequality

$$|f(z)| > M(r, f)\nu(r, f)^{(1/4)+\delta}$$

holds. Then there exists a set F in \mathbb{R}^+ and of finite logarithmic measure, i.e.,

$$\int_F \frac{dt}{t} < +\infty$$

such that

$$f^{(m)}(z) = \left(\frac{\nu(r, f)}{z}\right)^m (1 + o(1)) f(z)$$

holds whenever m is a fixed nonnegative integer and $r \notin F$.

Lemma 3 (Baker and Singh [1], also see [2]). Let f and g be two entire functions. Then

$$\text{sing}((f \circ g)^{-1}) \subset \text{sing}(f^{-1}) \cup f(\text{sing}(g^{-1})).$$

Lemma 4 (Polya [10]). Let f and g be two transcendental entire functions. Then

$$\lim_{r \to \infty} \frac{M(r, f \circ g)}{M(r, g)} = \infty.$$

Lemma 5. Let f be a transcendental entire function. Then

$$M(r, f') \leq M(r, f)^2$$

for a sufficiently large r.

Remark 3. This follows easily from a result of Valiron ([12]):

$$\lim_{r \to \infty} \frac{\log M(r, f')}{\log M(r, f)} = 1.$$
3. Proof of the theorem

Let \(F(z) = f(z) + P(z) \), \(P(z) \) is a nonconstant polynomial. We first prove that \(F \) is pseudo-prime. Assume that

\[
F(z) = g(h(z)),
\]

where \(g \) is a transcendental meromorphic function with at most one pole and \(h \) is a transcendental entire function. Thus

\[
f(z) = g(h(z)) - P(z), \quad f'(z) = g'(h(z))h'(z) - P'(z).
\]

First we consider the case that \(g \) is a transcendental entire function, and then we discuss two situations.

Case 1: \(g' \) has at least two zeros. Then there exists a zero \(c \) of \(g' \) such that \(h(z) = c \) has infinitely many roots \(\{z_k\}_{k=1}^{\infty} \). Thus we have

\[
f(z_k) = -P(z_k) + g(c), \quad f'(z_k) = -P'(z_k).
\]

By Lemma 1, we would have

\[
|P'(z_k)| \geq \frac{|P(z_k) - g(c)| \log |P(z_k) - g(c)|}{16\pi |z_k|},
\]

which leads to a contradiction.

Case 2: \(g' \) has at most one zero. Thus

\[
g'(w) = (w - w_0)^n e^{\alpha(w)}, \quad f'(z) = (h(z) - w_0)^n e^{\alpha(h(z))}h'(z) - P'(z),
\]

where \(n \) is a non-negative integer. Let \(K(z) = e^{-\alpha(h(z))/(n+3)} \), and assume that \(\Gamma \) is a simple curve tending to infinity such that if \(z \in \Gamma \) and \(|z| = r \), then \(|K(z)| = M(r, K) \). By Lemmas 4 and 5, we have, if \(z \in \Gamma \) and \(|z| = r \) is sufficiently large,

\[
|g'(h(z))h'(z)| = \left| \left(h(z) - w_0 \right)^n e^{\alpha(h(z))}h'(z) \right| = \frac{\left| \left(h(z) - w_0 \right)^n h'(z) \right|}{M(r, K)^{n+3}} \leq \frac{1}{M(r, K)} \to 0.
\]

Let \(L(z) = -\alpha(h(z))/(n + 3) \) and \(A(r, L) = \max_{|z| = r} \Re L(z) \). Thus if \(z \in \Gamma \), \(|K(z)| = M(r, K) = e^{A(r, L)} \), \(\Re L(z) = A(r, L) \). By Hadamard’s three-circle theorem, we have, for \(r_1 < r_2 < r_3 \),

\[
A(r_2, L) \leq \frac{\log r_2 - \log r_1}{\log r_3 - \log r_1} A(r_3, L) + \frac{\log r_3 - \log r_2}{\log r_3 - \log r_1} A(r_1, L).
\]
For $z_0 \in \Gamma$, we have

$$|L'(z_0)| = \lim_{z \rightarrow z_0, \mu \in \Gamma} \frac{|L(z) - L(z_0)|}{|z - z_0|} \geq \lim_{z \rightarrow z_0, \mu \in \Gamma} \frac{|\text{Re} L(z) - \text{Re} L(z_0)|}{|z - z_0|}.$$

Let $|z_0| = r_0$ and $|z| = r_0 + h, h > 0$, then as $z \rightarrow z_0, h \rightarrow 0$. Thus, by (5) and (6), we have, for sufficiently large r_0,

$$|L'(z_0)| \geq \lim_{z \rightarrow z_0, \mu \in \Gamma} \frac{A(r_0 + h, L) - A(r_0, L)}{|z - z_0|} = \lim_{z \rightarrow z_0, \mu \in \Gamma} \frac{h}{|z - z_0|} \frac{A(r_0 + h, L) - A(r_0, L)}{h}$$

$$\geq \lim_{h \rightarrow 0} \frac{\log(1 + h/r_0)}{\log r_0} \frac{(A(r_0, L) - A(1, L))}{h} = \frac{A(r_0, L) - A(1, L)}{r_0 \log r_o} > 1.$$

Let $w = G(z) = e^{\alpha(h(z))/(n+3)} = e^{-L(z)}$. Thus 0 is an asymptotic value of G and Γ is the corresponding asymptotic curve, $\gamma = G(\Gamma)$ is a simple curve connecting $G(0)$ and 0. Let B be the length of γ, which is a finite number. And $dw = e^{-L(z)L'(z)}dz$. By this, (4) and (7), if $z \in \Gamma$, we have

$$|g(h(z))| = \left| \int_{z_0 \text{ along } \Gamma}^z g'(h(z))h'(z)dz + g(h(z_0)) \right|$$

$$\leq \int_{z_0 \text{ along } \Gamma}^z |g'(h(z))h'(z)||dz| + |g(h(z_0))|$$

$$\leq \int_{w_0 \text{ along } \gamma}^w \frac{1}{|L'(z)|} |dw| + |g(h(z_0))|$$

$$\leq \int_{w_0 \text{ along } \gamma}^w |dw| + |g(h(z_0))|$$

$$\leq B + |g(h(z_0))|.$$

Thus we can find a sequence of $\{z_k\}_{k=1}^\infty$ such that $z_k \rightarrow \infty$ as $k \rightarrow \infty$, and

$$f(z_k) \sim -P(z_k), \quad f'(z_k) \sim -P'(z_k).$$

A contradiction follows from this and Lemma 1.
If \(g' \) has just one pole \(w_1 \), so does \(g \), then \(h(z) \) does not assume \(w_1 \), i.e., \(h(z) = e^{\beta(z)} + w_1 \). Moreover, if \(g' \) has a zero \(c \), then \(h(z) = c \) has infinitely many roots. One can derive a contradiction by arguing similarly as in Case 1. Hence \(g' \) has no zeros, i.e.,

\[
g'(w) = \frac{1}{(w - w_1)^n} e^{\alpha(w)},
\]

and

\[
g'(h(z))h'(z) = \beta'(z) \exp(\alpha(e^{\beta(z)} + w_1) + (1 - n)\beta(z)).
\]

By the same argument as that in Case 2 above, we can get a contradiction. Thus \(F(z) = f(z) + P(z) \) is pseudo-prime. Now we assume that \(F(z) \) has the following factorization:

\[
F(z) = f(z) + P(z) = Q(g(z)),
\]

where \(Q \) is rational, \(g \) is a transcendental meromorphic function. If \(Q \) is a polynomial, then \(g \) is entire. If \(Q \) has a pole \(w_1 \), then \(g(z) \) does not assume \(w_1 \). Thus \(h(z) = 1/(g(z) - w_1) \) is an entire function and \(F(z) = Q_1(h(z)) \), where \(Q_1 \) is a rational function. Without loss of generality, we may assume that \(g(z) \) is entire, and \(Q(w) \) has at most one pole. Now we discuss the following two sub-cases.

Subcase 1: \(Q \) has one pole, say \(w_0 \), i.e., \(Q(w) = Q_1(w)/(w - w_0)^n \), where \(Q_1(w) \) is a polynomial with degree \(m \) and \(Q_1(w_0) \neq 0 \). Then \(g(z) = w_0 + e^{h(z)} \), where \(h(z) \) is a nonconstant entire function. Thus we have

\[
f(z) = Q_1(w_0 + e^{h(z)}) e^{-nh(z)} - P(z)
= a_0 e^{-nh(z)} + a_1 e^{-(n-1)h(z)} + \cdots + a_m e^{(m-n)h(z)} - P(z),
\]

where \(a_0, a_1, \ldots, a_m \) are constants and \(a_m \neq 0 \), \(a_0 = Q_1(w_0) \neq 0 \). Thus

\[
f'(z) = (-na_0 e^{-nh(z)} - (n-1)a_1 e^{-(n-1)h(z)} + \cdots
+ (m-n)a_m e^{(m-n)h(z)}) h'(z) - P'(z)
= \left[-na_0 - (n-1)a_1 e^{h(z)} + \cdots
+ (m-n)a_m e^{nh(z)} \right] e^{-nh(z)} h'(z) - P'(z)
= P_1(e^{h(z)}) e^{-nh(z)} h'(z) - P'(z),
\]

where \(P_1(w) \) is a polynomial and \(P_1(0) = -na_0 \neq 0 \). If \(P_1(w) \) is a nonconstant polynomial, then \(P_1(w) \) has a zero \(c \neq 0 \) and \(e^{h(z)} = c \) has infinitely many roots. Let \(\{z_k\}_{k=1}^{\infty} \) be zeros of \(e^{h(z)} - c \), then \(f'(z_k) = -P'(z_k) \) and

\[
f(z_k) = \frac{Q_1(w_0 + c)}{c^n} - P(z_k).
\]
Again, by Lemma 1, we have a contradiction. If \(P_1(w) \) is a constant polynomial, then

\[
f(z) = a_0 e^{-nh(z)} + a_m - P(z), \quad f'(z) = -na_0 e^{-nh(z)} h'(z) - P'(z).
\]

Let \(K(z) = e^{nh(z)} \) and \(|z'| = r, |K(z')| = M(r, K) \). Then by Lemma 2, we have, for \(r \notin F \),

\[
| - na_0 e^{-nh(z')} h'(z') | = \left| a_0 \frac{1}{K(z')} K'(z') \right| = |a_0| \frac{1}{M(r, K)} \frac{v(r, K)}{r} (1 + o(1)),
\]

\[
|a_0 e^{-nh(z')}| = \frac{|a_0|}{M(r, K)}.
\]

Noting \(\lim_{r \to \infty} (v(r, K)/M(r, K)) = 0 \) for a transcendental entire function \(K \), we can find a sequence of \(\{z_k\}_{k=1}^{+\infty} \) such that \(|f(z_k)| \sim |P(z_k)|, |f'(z_k)| \sim |P'(z_k)| \). A contradiction follows from this and Lemma 1.

Subcase 2: \(Q(w) \) has no pole, i.e., \(Q(w) \) is a polynomial with degree \(\geq 2 \). If \(Q'(w) \) has at least two distinct zeros, then there exists a zero \(w_1 \) of \(Q'(w) \) such that \(g(z) = w_1 \) has infinitely many zeros \(\{z_n\}_{n=1}^{+\infty} \). Then

\[
f'(z_n) = Q'(g(z_n)) - P'(z_n) = -P'(z_n), \quad f(z_n) = Q(w_1) + P(z_n).
\]

However, by Lemma 1,

\[
|f'(z_n)| \geq \frac{|f(z_n)| \log |f(z_n)|}{16\pi |z_n|},
\]

which will lead to a contradiction. Therefore, we only need to treat the case that \(Q'(w) \) has only one zero \(w_0 \). If \(g(z) = w_0 \) has infinitely many zeros, again a contradiction follows from Lemma 1. Hence, we have

\[
g(z) = w_0 + p_1(z) e^{h(z)} \quad \text{and} \quad Q'(z) = A(w - w_0)^{n-1},
\]

where \(p_1(z) \) is a polynomial, \(h(z) \) a nonconstant entire function. Thus

\[
Q(w) = \frac{A}{n} (w - w_0)^n + B,
\]

\[
f(z) = \frac{A}{n} p_1(z)^n e^{nh(z)} + B - P(z),
\]

\[
f'(z) = \frac{A}{n} \left(p_1'(z) + p_1(z) nh'(z) \right) e^{nh(z)} - P'(z).
\]
Set $K(z) = e^{-nh(z)}$ and let $|z'| = r$, $K'(z') = M(r, K)$. Then it follows from Lemma 2, for $r \notin F$, that

$$\left| \frac{A}{n} (p_1'(z') + p_1(z') nh'(z')) e^{nh(z')} \right| = \left| \frac{A}{n} \left(\frac{p_1'(z')}{K(z')} - \frac{p_1(z')}{K(z')} \frac{K'(z')}{K(z')} \right) \right| \leq \frac{cr^t}{M(r, K)} + \frac{dr^t \nu(r, K)}{M(r, K)},$$

where c, d are positive constants, $t = \deg p_1 - 1$. Noting

$$\lim_{r \to \infty} \frac{r^t \nu(r, K)}{M(r, K)} = 0$$

for a transcendental entire function K, there exists a sequence of $\{z_n\}_{n=1}^{+\infty}$ such that

$$f(z_n) \sim -P(z_n), \quad f'(z_n) \sim -P(z_n).$$

Again by Lemma 1, we get a contradiction. Thus we have proved that $F(z) = f(z) + P(z)$ is left-prime. Next we show that F is right-prime. Let

$$F(z) = g(q(z)),$$

where g is a transcendental entire function and $q(z)$ a polynomial with degree ≥ 2. Thus

$$f(z) = g(q(z)) - P(z)$$

and hence

$$f'(z) = g'(q(z)) q'(z) - P'(z).$$

First, we prove that $g'(w)$ has infinitely many zeros. In fact, if $g'(w)$ has only finitely many zeros, then $g'(w) = s(w)e^{h'(w)}$, where $s(w)$ is a polynomial and $h(w)$ is a nonconstant entire function. Let $K(z) = e^{-h(z)/3}$. There exists a curve Γ tending to infinity such that if $z \in \Gamma$, then $|K(z)| = M(|z|, K)$. Noting that K is a transcendental entire function, we have that $M(r, K) \geq r^{2m+2}$ for $r \geq r_0$, where $m = \deg s$. Let $w = G(z) = e^{h(z)/3}$ and $\lambda = G(\Gamma)$. Then $dw = \frac{1}{3} h'(z) e^{h(z)/3}$. If $h(z)$ is nonconstant polynomial, then there exists a positive constant c such that $|h'(z)| \geq c$ for sufficiently large $|z| = r$. If $h(z)$ is transcendental, then $|\frac{1}{3} h'(z)| > 1$ for $z \in \Gamma$ and sufficiently large $|z| = r$, by (7). Hence, we have, for $z \in \Gamma$ and $|z| \geq r_0$,

$$|g'(z)| \leq \frac{1}{M(r, K)^2},$$

$$|g(z)| = \left| \int_{z_0}^{z} g'(z) \, dz + g(z_0) \right| \leq \left| \int_{w_0}^{w} \, dw \right| \leq A,$$
On factorizations of entire functions of bounded type

where $w_0 = G(z_0)$, $w = G(z)$ and A is a positive constant. Let γ be a component of $q^{-1}(\Gamma)$, and denote $R = |q(z)|$ for $z \in \gamma$. Then for $z \in \gamma$, we have

$$|g(q(z))| \leq A, \quad |g'(z)q'(z)| \leq \frac{BR^{m+1}}{M(R,K)^2} \to 0, \quad \text{as } z \to \infty,$$

where A and B are constants. Hence, for $z \in \gamma$, we have

$$|f(z)| \sim |P(z)|, \quad |f'(z)| \sim |P'(z)|.$$

Again, by Lemma 1, the above estimates will lead to a contradiction as before. Thus g' has infinitely many zeros. Now let $n = \deg q$ and $m = \deg P$. Next we will prove that $n | m$, i.e., there is a positive integer r such that $m = nr$. Let \(\{w_k\}_{k=1}^{\infty} \) denote the zeros of $g'(w)$ and set

$$q(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0.$$

We consider the roots of the equation

$$q(z) = w_k,$$

which implies

$$a_n z^n (1 + o(1)) = w_k. \quad (8)$$

On the other hand, the roots of the above equation can be expressed as

$$z_k^{(j)} = \left| \frac{w_k}{a_n} \right|^{1/n} e^{i(2j\pi + \phi_k)/n} \left(1 + o(1) \right),$$

where

$$\phi_k = \arg \left(\frac{w_k}{a_n} \right), \quad j = 0, 1, 2, \ldots, n - 1.$$

Thus

$$P(z_k^{(0)}) \sim A|w_k|^{m/n},$$

$$P(z_k^{(1)}) \sim e^{2m\pi i/n} A|w_k|^{m/n},$$

$$P'(z_k^{(0)}) \sim B|w_k|^{(m-1)/n},$$

$$P'(z_k^{(1)}) \sim e^{2(m-1)\pi i/n} B|w_k|^{(m-1)/n},$$

where A, B are constants depending on $q(z)$ and $P(z)$ only. Thus we have sequences $\{w_k\}_{k=1}^{\infty}$, with $w_k \to \infty$ as $k \to \infty$, $\{z_k^{(0)}\}_{k=1}^{\infty}$ and $\{z_k^{(1)}\}_{k=1}^{\infty}$ such that
\[
q(z_k^{(0)}) = q(z_k^{(1)}) = w_k,
\]
\[
P(z_k^{(0)}) - P(z_k^{(1)}) \sim (1 - e^{2m\pi i/n})A|w_k|^{m/n},
\]
\[
f'(z_k^{(0)}) = -P'(z_k^{(0)}) \sim -B|w_k|^{(m-1)/n},
\]
\[
f'(z_k^{(1)}) = -P'(z_k^{(1)}) \sim -e^{2(m-1)\pi i/n}B|w_k|^{(m-1)/n},
\]
\[
f(z_k^{(0)}) = g(w_k) - P(z_k^{(0)}),
\]
\[
f(z_k^{(1)}) = g(w_k) - P(z_k^{(1)}),
\]
\[
f(z_k^{(1)}) - f(z_k^{(0)}) = P(z_k^{(0)}) - P(z_k^{(1)}).
\]

If \(n \nmid m\), then \(1 - e^{2m\pi i/n} \neq 0\). Now we discuss two subcases.

Subcase 1: \(\{f(z_k^{(0)})\}_{k=1}^{\infty}\) is bounded. We have, by (10)--(15),

\[
|f(z_k^{(1)})| \sim |(1 - e^{2m\pi i/n})A| |w_k|^{m/n}.
\]

By this and Lemma 1, we obtain that

\[
|B| |w_k|^{(m-1)/n} \sim |f'(z_k^{(1)})| \geq \frac{|f(z_k^{(1)})| \log |f(z_k^{(1)})|}{16\pi |z_k^{(1)}|}
\]

\[
\sim C|w_k|^{(m-1)/n} \log(|1 - e^{2m\pi i/n})A| |w_k|^{m/n}),
\]

where

\[
C = \frac{|(1 - e^{2m\pi i/n})A| |a_n|^{1/n}}{16\pi},
\]

which is a contradiction.

Subcase 2: \(\{f(z_k^{(0)})\}_{k=1}^{\infty}\) is unbounded. Then there exists a sub-sequence of \(\{f(z_k^{(0)})\}_{k=1}^{\infty}\) tending to infinity, which we may, without confusing, denote by the original sequence: \(\{f(z_k^{(0)})\}_{k=1}^{\infty}\). Thus by Lemma 1, we have

\[
|B| |w_k|^{(m-1)/n} \sim |f'(z_k^{(0)})| \geq \frac{|f(z_k^{(0)})| \log |f(z_k^{(0)})|}{16\pi |z_k^{(0)}|}
\]

\[
\sim \frac{|a_n|^{1/n}|f(z_k^{(0)})| \log |f(z_k^{(0)})|}{16\pi |w_k|^{1/n}}.
\]

Hence,

\[
|f(z_k^{(0)})| = o(|w_k^{(m/n)}|).
\]
Thus

\[|f(z_k^{(1)})| \sim |(1 - e^{2m\pi i/n})A| |w_k^{m/n}|. \]

By arguing similarly as in Subcase 1, we will arrive at a contradiction. Hence \(n \mid m \). Finally, we will prove that \(g(z) \) is a common right factor of \(f(z) \) and \(P(z) \). If \(g(z) \) is not a right factor of \(P(z) \), then there exist polynomials \(Q \) and \(P_1 \) with \(0 < \deg P_1 < n = \deg q \) such that

\[P(z) = Q(q(z)) + P_1(z). \]

Thus

\[G(z) = f(z) + P_1(z) = g(q(z)) - Q(q(z)) = g_1(q(z)), \]

where \(g_1(w) = g(w) - Q(w) \) is a transcendental entire function. By arguing similarly as in the subcase above, it follows that \(n \mid \deg P_1 \), which is a contradiction. Thus, \(P(z) = Q(q(z)) \) and \(f(z) = g(q(z)) - Q(q(z)) \). The conclusion follows.

4. Concluding remarks

Corollary. Let \(f \) be a transcendental entire function in \(B \), then for any constant \(a \neq 0 \), \(f(z) + az \) is prime.

Remark 4. This corollary shows that if \(f(z) - az \in B \) for some constant \(a \), then \(|NP(f)| \leq 1 \).

Remark 5. If \(h \) is a periodic entire function of order one and mean type, then \(h \in B \). Thus if \(G(z) \) is as stated in Theorem D, then \(G^n \in B \).

Remark 6. The condition \(f \in B \) in the above theorem and corollary is not removable. For example, \(f(z) = e^z e^{e^z} + e^z \), then \(f(z) = (we^w + w) \circ e^z \), and \(f(z) + z = (e^w + w) \circ (e^z + z) \). This example shows the cardinality of \(NP(f) \) may be greater than one if \(f \notin B \).

Remark 7. If \(f \) is an entire function such that \(\text{sing}(f^{-1}) \subset \mathbb{R} \), then, by Lemma 3, \(\sin(f(z)) \in B \) and \(\cos(f(z)) \in B \). Thus, for any constant \(a \neq 0 \), \(\sin(f(z)) + az \) and \(\cos(f(z)) + az \) are prime. It was mentioned in [2] that the Pólya–Laguerre class \(LP \) consists of all entire functions \(f \) which have a representation

\[f(z) = \exp(-az^2 + bz + c)z^n \prod \left(1 - \frac{z}{z_k}\right) \exp\left(\frac{z}{z_k}\right), \]

where \(a, b, c \in \mathbb{R} \), \(a \geq 0 \), \(n \in \mathbb{N}_0 \), \(z_k \in \mathbb{R} \setminus \{0\} \) for all \(k \in \mathbb{N} \), and \(\sum_{k=1}^{\infty} |z_k|^{-2} < \infty \). Furthermore, if \(f_1, f_2, \ldots, f_n \in LP \), and \(f = f_1 \circ f_2 \circ \cdots \circ f_n \), then \(\text{sing}(f^{-1}) \subset \mathbb{R} \). Thus, for example, \(\sin(f(z)) + az \) is prime for \(a \neq 0 \), when \(f \in LP \).
References

Received 1 October 2003