ON THE Γ-CONVERGENCE OF LAPLACE–BELTRAMI OPERATORS IN THE PLANE

Maria Rosaria Formica
Universit`a di Napoli, Dipartimento di Matematica e Applicazioni
via Cintia, IT-80126 Napoli, Italy; formica@matna2.dma.unina.it

Abstract. We show here that if f_h is a sequence of mappings of finite distortion K_h, uniformly bounded in some exponential norm, weakly converging to f in $W^{1,2}(\Omega)$, $\Omega \subset \mathbb{R}^2$, then the matrices $A(x, f_h)$ in the Beltrami operators associated to each f_h, Γ-converge, in the sense of De Giorgi, to the matrix $A(x, f)$ in the Beltrami operator associated to f.

1. Introduction

For Ω an open subset of \mathbb{R}^2 we shall study mappings $f = (f_1, f_2): \Omega \to \mathbb{R}^2$ in the Sobolev space $W^{1,2}(\Omega, \mathbb{R}^2)$. We say that f has finite distortion if

$$|Df(x)|^2 \leq \mathcal{K}(x) J(x, f) \quad \text{a.e.}$$

(1.1)

Here $|Df(x)|$ stands for the Hilbert–Schmidt norm of the differential matrix $Df(x) \in \mathbb{R}^{2 \times 2}$ and $J(x, f) = \det Df(x)$. That is,

$$|Df(x)|^2 = \sum_{i,j=1}^{2} \left| \frac{\partial f_i}{\partial x_j} \right|^2 \quad \text{and} \quad J(x, f) = \frac{\partial f_1}{\partial x_1} \frac{\partial f_2}{\partial x_2} - \frac{\partial f_1}{\partial x_2} \frac{\partial f_2}{\partial x_1}.$$

The function $\mathcal{K} = \mathcal{K}(x)$ is assumed to be measurable with values in the interval $[2, \infty)$. It will be advantageous to write \mathcal{K} as

$$\mathcal{K}(x) = K(x) + \frac{1}{K(x)} \quad \text{where} \quad 1 \leq K(x) < \infty.$$

(1.2)

We refer to the smallest such $K(x)$ for which (1.1) holds as the distortion function of f. If $K(x)$ is bounded by a constant, say $1 \leq K(x) \leq K$ a.e., then we say that f is K-quasiregular. An important quantity associated to a mapping with finite distortion is the so called distortion tensor $G(\cdot, f): \Omega \to \mathbb{R}^{2 \times 2}$, defined by

$$G(x, f) = \begin{cases} \frac{D^i f(x) D f(x)}{J(x, f)} & \text{if } J(x, f) \neq 0, \\ I & \text{if } J(x, f) = 0, \end{cases}$$

(1.3)

Work performed as part of a National Research Project, MURST 40%(1997).
where $D^t f(x)$ stands for the transposed differential.

The distortion inequality (1.1) reads as

\[(1.4) \quad \frac{\|\xi\|^2}{K(x)} \leq \langle G(x, f)\xi, \xi \rangle \leq K(x)\|\xi\|^2\]

and we have $\det G(x, f) = 1$ a.e.

The symmetric matrix function $G(\cdot, f)$ can be viewed as a Riemannian metric on Ω, the pullback of the Euclidean structure via the mapping f. It is obvious that f is conformal with respect to this new metric. This raises an important question: how does $G(\cdot, f)$ change with f? We are particularly concerned with the continuity property of the map $f \to G(\cdot, f)$, since many constructions in quasiconformal geometry and elliptic PDE’s rely on limiting processes. The natural convergence of the mapping $f_h: \Omega \to \mathbb{R}^2$ with finite distortion is that of the weak topology in $W^{1,2}(\Omega, \mathbb{R}^2)$. This, however, does not guarantee convergence of the matrices $G(x, f_h)$ to $G(x, f)$ in any familiar sense (compare with Example 6.1 here and also [LV]). Note that the condition $\det G(x, f_h) = 1$ is not necessarily preserved under the weak convergence of $G(x, f)$.

S. Spagnolo [S2] first realized that the proper way to overcome this difficulty is by considering the Γ-convergence of the inverse matrices

$$A(x, f) = G(x, f)^{-1}.$$

This matrix clearly verifies the bounds at (1.4) as well. See Section 3 for the definition of Γ-convergence.

Spagnolo’s result dealt with the special case of K-quasiregular mappings in which $A(x, f)$ were bounded and uniformly elliptic matrices. In that case Γ-convergence is equivalent to the L^2-convergence of solutions of the Dirichlet problem. More precisely, given a sequence $\{A_h\}$ of 2×2 matrices satisfying

$$\frac{\|\xi\|^2}{K} \leq \langle A_h(x)\xi, \xi \rangle \leq K\|\xi\|^2, \quad K \geq 1,$$

we consider the elliptic operators on a bounded open set $\Omega \subset \mathbb{R}^2$

$$\mathcal{L}_h = \text{div}[A_h(x)\nabla]: W^{1,2}_0(\Omega) \to W^{-1,2}(\Omega).$$

They are certainly invertible. Following [S1], we say that $\{A_h\}$ Γ-converges to A if for every $\varphi \in W^{-1,2}(\Omega)$, $\mathcal{L}_h^{-1}(\varphi) \rightharpoonup \mathcal{L}^{-1}(\varphi)$ in $L^2(\Omega)$, where $\mathcal{L} = \text{div}[A(x)\nabla]$. Later these results were generalized to the n-dimensional case by [DD].

In the present paper we extend Spagnolo’s result to sequences of mappings with pointwise unbounded distortion. Our only assumption will be that the distortion functions stay bounded in the EXP_α class for a certain $\alpha > 1$, see Section 2, for the definitions.

The main result is as follows (see Section 5):
Theorem. Let \(f_h \) converge weakly in \(W^{1,2}(\Omega,\mathbb{R}^2) \) to a mapping \(f \), and suppose that their distortion functions \(K_h \) converge to \(K \) weakly in \(L^1(\Omega) \) and satisfy
\[
\int_{\Omega} \exp\left(\frac{K_h(x)}{\lambda} \right)^{\alpha} \, dx \leq c
\]
for some \(\alpha > 1 \), \(\lambda > 0 \) and \(c > 0 \). Then \(f \) has distortion \(K \) and
\[
A(x, f_h) \xrightarrow{\Gamma_\alpha} A(x, f).
\]

For the notion of \(\Gamma_\alpha \)-convergence, we refer to the definition in Section 3.

In Section 6 we will relate our results to some known convergence theorems for quasiregular mappings [GMRV], [IK], [Bo].

2. Some Orlicz spaces

Let \(\Omega \) be a bounded open set in \(\mathbb{R}^n \). An Orlicz function is a nonnegative continuously increasing function \(P: \mathbb{R}_+ \to \mathbb{R}_+ \), verifying \(P(0) = 0 \) and \(P(\infty) = \infty \).

The Orlicz space \(L^P(\Omega) \) consists of all measurable functions \(\varphi: \Omega \to \mathbb{R} \) such that
\[
\int_{\Omega} P(\lambda^{-1} |\varphi|) < \infty
\]
for some \(\lambda = \lambda(\varphi) > 0 \) (see [RR]).

For \(\alpha > 1 \), we denote by \(\text{EXP}_\alpha(\Omega) \) the Orlicz space with the defining function \(P(t) = \exp(t^\alpha) - 1 \). It consists of all measurable functions \(\varphi \) on \(\Omega \) such that
\[
\|\varphi\|_{\text{EXP}_\alpha(\Omega)} = \inf \left\{ \lambda > 0 : \frac{1}{|\Omega|} \int_{\Omega} \exp\left(\frac{|\varphi(x)|}{\lambda} \right)^\alpha \, dx \leq 2 \right\} < \infty.
\]

Here
\[
\frac{1}{|\Omega|} \int_{\Omega} \psi = \psi_{\Omega},
\]
and \(\|\varphi\|_{\text{EXP}_\alpha(\Omega)} \) provides a norm of \(\varphi \). Another space of interest to us will be the Zygmund space \(L^p \log^\beta L(\Omega) \), with \(p \geq 1 \) and \(\beta \geq 0 \), with the defining function \(P(t) = t^p \log^\beta(e + t) \). It consists of all measurable functions \(\varphi \) on \(\Omega \) such that
\[
\int_{\Omega} |\varphi|^p \log^\beta \left(e + \frac{|\varphi|}{|\varphi|_{\Omega}} \right) \, dx < \infty.
\]

Observe that both are Banach spaces and \(\text{EXP}_\alpha(\Omega) \) is the dual to \(L^1 \log^\beta L \), when \(\beta = 1/\alpha \).

The Luxemburg norm of a function \(\varphi \in L^p \log^\beta L(\Omega) \) is given by
\[
\|\varphi\|_{L^p \log^\beta L(\Omega)} = \inf \left\{ \lambda > 0 : \frac{1}{|\Omega|} \int_{\Omega} \left(\frac{|\varphi|}{\lambda} \right)^p \log^\beta \left(e + \frac{|\varphi|}{\lambda} \right) \, dx \leq 1 \right\}.
\]
Proposition 2.1 (Generalized Hölder inequality). Let $\alpha \geq 1$. Let $K(x) \in \text{EXP}_\alpha(\Omega)$, $\varphi \in L^2 \log^{1/\alpha} L$, and $\psi \in L^2 \log^{1/\alpha} L$. Then
\[
\left| \int_\Omega K(x)\varphi(x)\psi(x) \, dx \right| \leq c \left\| K \right\|_{\text{EXP}_\alpha} \|\varphi\|_{L^2 \log^{1/\alpha} L} \|\psi\|_{L^2 \log^{1/\alpha} L}.
\]

For $P(t) = t^2 \log^\beta(e + t)$ we denote by $W^{1,P}(\Omega)$ the Orlicz–Sobolev space of functions $\varphi \in L^2 \log^\beta L$ whose gradient belongs to the Zygmund space $L^2 \log^\beta L$. We supply this space with the norm
\[
\|\varphi\|_{W^{1,P}(\Omega)} = \|\varphi\|_{L^2 \log^\beta L(\Omega)} + \|\nabla \varphi\|_{L^2 \log^\beta L(\Omega)}.
\]

3. The Γ-convergence

We denote by $\mathbb{R}^{2 \times 2}$ the set of symmetric 2×2 matrices A, such that $\langle A\xi, \xi \rangle \geq 0$ for all $\xi \in \mathbb{R}^2$. Consider measurable functions $A : \Omega \rightarrow \mathbb{R}^{2 \times 2}$ on $\Omega \subset \mathbb{R}^2$ satisfying
\[
\frac{|\xi|^2}{K(x)} \leq \langle A(x)\xi, \xi \rangle \leq K(x)|\xi|^2
\]
for some $1 \leq K(x) < \infty$ a.e. The smallest $K(x)$, for which the above holds, denoted by $K_A(x)$, is called the distortion function of A.

The present paper is concerned with mappings whose distortion belongs to the exponential class $\text{EXP}_\alpha(\Omega)$, $1 < \alpha \leq \infty$. For the purpose of this work, we adopt the following variant of De Giorgi’s notion of Γ-convergence ([DF]).

Definition 3.1. Let A and A_h ($h = 1, 2, \ldots$) be matrix functions whose distortions K_A and K_{A_h} are uniformly bounded in the norm of $\text{EXP}_\alpha(\Omega)$. We say that $\{A_h\}$ Γ_α-converges to A if the following two conditions are verified:

1. The inequality
\[
\int_\Omega \langle A(x)\nabla u, \nabla u \rangle \, dx \leq \liminf_{h \rightarrow \infty} \int_\Omega \langle A_h(x)\nabla u_h, \nabla u_h \rangle \, dx
\]
holds whenever $|\nabla u_h|, |\nabla u| \in L^2 \log^{1/\alpha} L(\Omega)$ and $u_h \rightarrow u$ in $L^2 \log^{1/\alpha} L$.

2. For every $v \in L^2 \log^{1/\alpha} L(\Omega)$ with $|\nabla v| \in L^2 \log^{1/\alpha}(\Omega)$ there exists a sequence $v_h \in L^2 \log^{1/\alpha} L(\Omega)$ with $|\nabla v_h| \in L^2 \log^{1/\alpha} L$ such that $v_h \rightarrow v$ in $L^2 \log^{1/\alpha} L(\Omega)$ and
\[
\int_\Omega \langle A(x)\nabla v, \nabla v \rangle = \lim_{h} \int_\Omega \langle A_h\nabla v_h, \nabla v_h \rangle.
\]

Remark. The assumption that K_A and K_{A_h} belong to $\text{EXP}_\alpha(\Omega)$ is needed to guarantee that the above integrals are finite. This follows from the inequality
\[
\int_\Omega \langle A(x)\nabla u, \nabla u \rangle \, dx \leq \int_\Omega K_A(x)|\nabla u|^2 \, dx
\]
\[
\leq c \left\| K_A \right\|_{\text{EXP}_\alpha(\Omega)} \|\nabla u\|_{L^2 \log^{1/\alpha} L(\Omega)}^2.
\]
If one merely assumes that K_A and $K_{Ah} \in L^1$ then one must be confined to Lipschitz functions. In this case we speak of Γ-convergence. We say that a sequence A_h of matrix functions $A_h \in L^1(\Omega, R^{2\times2})$ Γ-converges to A if:

1. Inequality (3.2) holds whenever $u, u_h \in \text{Lip}(\Omega)$ and $u_h \to u$ in $L^2(\Omega)$;
2. For every $v \in \text{Lip}(\Omega)$ one can find a sequence $v_h \in \text{Lip}(\Omega)$ converging to v in $L^2(\Omega)$ satisfying (3.3).

Actually, by the general properties of Γ-convergence, conditions (1) and (2) remain true if we replace Ω by any of its open subsets.

We report here the fundamental compactness result concerning Γ-convergence [MS].

Theorem 3.1. Let A_h be a sequence of symmetric 2×2 matrices satisfying

$$0 \leq \langle A_h(x)\xi, \xi \rangle \leq K_h(x)|\xi|^2 \quad \text{for a.e. } x \in \Omega \text{ and } \xi \in R^2.$$

Assume that $K_h \rightharpoonup K$ weakly in $L^1(\Omega)$. Then there exists a subsequence A_{hr}, Γ-converging to a symmetric matrix A. Moreover, this matrix A also satisfies

$$0 \leq \langle A(x)\xi, \xi \rangle \leq K(x)|\xi|^2.$$

In this connection it is appropriate to mention another important notion of convergence of matrix functions $A_h: \Omega \to R^{2\times2}$, the so-called G-convergence. For simplicity we confine ourselves to bounded domains and to sequences such that

$$1 \leq K_{Ah}(x) \leq K \quad \text{a.e. for } h = 1, 2, \ldots,$$

and

$$1 \leq K_A(x) \leq K \quad \text{a.e.}$$

We recall from the introduction the elliptic operators and their inverse

$$\mathcal{L}_h = \text{div} [A_h(x)\nabla]: W_0^{1,2}(\Omega) \to W^{-1,2}(\Omega), \quad \mathcal{L}_{h}^{-1}: W^{-1,2}(\Omega) \to W_0^{1,2}(\Omega),$$

$$\mathcal{L} = \text{div} [A(x)\nabla]: W_0^{1,2}(\Omega) \to W^{-1,2}(\Omega), \quad \mathcal{L}^{-1}: W^{-1,2}(\Omega) \to W_0^{1,2}(\Omega).$$

Following Spagnolo [S1], $\{A_h\} G$-converges to A if $\mathcal{L}_{h}^{-1}(\varphi) \rightharpoonup \mathcal{L}^{-1}(\varphi)$ weakly in $W_0^{1,2}(\Omega)$, for every $\varphi \in W^{-1,2}(\Omega)$. We emphasize that under condition (3.5) all the above notions of convergence are equivalent, though we shall not pursue this matter here, see [MS].
4. Mappings of finite distortion and the Laplace–Beltrami operators

Let \(\Omega \) be a bounded open set in \(\mathbb{R}^2 \) and \(f = (f^1, f^2) \in W^{1,2}(\Omega, \mathbb{R}^2) \) be a mapping of finite distortion \(K : \Omega \to [1, \infty) \), i.e. satisfying, for a.e. \(x \in \Omega \),
\[
|Df(x)|^2 \leq [K(x) + K^{-1}(x)]J(x, f),
\]
where \(J(x, f) \) is the Jacobian determinant of \(f \). The distortion tensor \(G(x, f) \) of \(f \) at \(x \) is defined in (1.3). It is easy to check that \(G \) is a symmetric matrix with \(\det G = 1 \) and that (1.4) is equivalent to (4.1). In fact, for any \(2 \times 2 \)-matrix \(F \) with \(\det F > 0 \), we can consider
\[
G = \frac{F^t F}{\det F}.
\]
Then, obviously
\[
\det G = 1.
\]
Moreover, recalling the Hilbert–Schmidt norm of \(F \),
\[
|F|^2 = \text{tr} F^t F
\]
the distortion inequality
\[
|F|^2 \leq \left(K + \frac{1}{K} \right) \det F
\]
is equivalent to
\[
\text{tr} G \leq K + \frac{1}{K}.
\]
Let \(\lambda \) and \(1/\lambda \) be the eigenvalues of \(G \). Then the last inequality means that
\[
\lambda + \frac{1}{\lambda} \leq K + \frac{1}{K};
\]
hence \(1/K \leq \lambda \leq K \).

Now we consider the inverse matrix
\[
A(x, f) = G(x, f)^{-1}
\]
which obviously satisfies the ellipticity condition
\[
\frac{|\xi|^2}{K(x)} \leq \langle A(x, f)\xi, \xi \rangle \leq K(x)|\xi|^2.
\]
Connections between mappings of finite distortion and PDEs are established via the Laplace–Beltrami operator \(\mathcal{L} = \text{div} [A(x, f)\nabla] \). Note that the components \(f^i \) \((i = 1, 2)\) solve the equations
\[
\begin{cases}
\mathcal{L}[f^i] = 0, \\
\langle A(x, f)\nabla f^i, \nabla f^j \rangle = \delta_{ij} J(x, f),
\end{cases}
\]
see for example [BI] and [HKM]. Planar mappings with unbounded distortion have been recently studied by [D], [I˘S] and most recently by [MM], [BJ], [RSY], [IS]. In particular in [MM] the following higher integrability result, which will be useful to us, was established.
Theorem 4.1. If $f \in W^{1,2}(\Omega)$ satisfies (4.1) with $K \in \text{EXP}_\alpha(\Omega)$, for certain $\alpha > 1$, then $|Df|$ belongs to $L^2 \log^{1/\alpha} L(\Omega_1)$ for any $\Omega_1 \subset \subset \Omega$ and the following inequality holds:

$$(4.3) \quad \|Df\|_{L^2 \log^{1/\alpha} L(\Omega_1)} \leq c(\Omega_1)\|K\|_{\text{EXP}_\alpha(\Omega)}\|Df\|_{L^2(\Omega)}.$$

This is true in all dimensions, provided the exponent 2 is replaced by the dimension n.

In view of Hadamard’s inequality

$$\langle A(x,f)\nabla f^i, \nabla f^i \rangle = J(x,f) \leq \frac{1}{2}|Df(x)|^2,$$

we deduce by (4.3)

$$(4.4) \quad \|\langle A(x,f)\nabla f^i, \nabla f^i \rangle\|_{L^1 \log^{1/\alpha} L(\Omega_1)} \leq c(\Omega_1)\|K\|_{\text{EXP}_\alpha(\Omega)} \int_\Omega |Df|^2 \, dx.$$

We show here that the limit mapping f of a weakly convergent sequence of mappings f_h with finite distortion also has finite distortion. Our arguments are based on the weak continuity of the Jacobian determinant $[R]$, $[M\ddot{u}]$ and the concept of polyconvexity. General n-dimensional results of this type have been recently obtained by F.W. Gehring and T. Iwaniec in [GI]. They adopted slightly different definition of the distortion, which for $n = 2$ reduces to

$$|Df(x)|^2 \leq 2K(x)J(x,f).$$

Theorem 4.2. Let $f_h: \Omega \to \mathbb{R}^2$ be mappings of finite distortion $K_h(x)$:

$$(4.5) \quad |Df_h(x)|^2 \leq \left[K_h(x) + \frac{1}{K_h(x)} \right] J(x,f_h).$$

Assume that K_h are integrable and converge weakly to K in $L^1(\Omega)$, while $f_h \rightharpoonup f$ weakly in $W^{1,2}(\Omega, \mathbb{R}^2)$. Then the above inequality remains valid for the limit map.

Proof. Let us first introduce some useful notation. Set $F = (B, E)$ where the vectors B, E are defined by

$$E = \nabla f^1, \quad B = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \nabla f^2$$

and let

$$F^+ = \frac{1}{2}(E + B), \quad F^- = \frac{1}{2}(E - B).$$

It is obvious that

$$J(x,f) = \langle B, E \rangle = |F^+|^2 - |F^-|^2 := J(F), \quad |F|^2 = 2(|F^+|^2 + |F^-|^2).$$
Hence the distortion inequality
\[|F|^2 \leq \left(K + \frac{1}{K} \right) J(F) \]
is easily seen to be equivalent to
\[|F^-| \leq \frac{K - 1}{K + 1} |F^+| . \]
This, in turn, is equivalent to
\[\frac{\|F_h\|^2}{J(F_h)} \leq K_h \]
with \(K_h \to K \) weakly in \(L^1 \). The desired conclusion
\[\frac{\|F\|^2}{J(F)} \leq K \]
follows by applying the inequality
\[\frac{\|F\|^2}{J(F)} \leq \frac{\|F_h\|^2}{J(F_h)} + \frac{2\|F\|}{J(F)} (\|F\| - \|F_h\|) - \frac{\|F\|^2}{J(F)^2} [J(F) - J(F_h)] \]
The latter is immediate from the convexity of the function \((x, y) \to x^2/y\). The well-known weak continuity property of the Jacobians [R], together with the lower semicontinuity of the norm \(\| \cdot \| \), imply (4.7). Here, for simplicity, we have assumed \(J(F) > 0 \) and \(J(F_h) > 0 \). To get rid of this redundant assumption one must replace \(J(F) \) by the expression \(J(F) + \varepsilon \|F\| \), \(J(F_h) \) and then pass to the limit as \(\varepsilon \to 0 \).

5. The convergence theorem

In this section we consider a sequence \(f_h = (f^1_h, f^2_h) \in W^{1,2}(\Omega, \mathbb{R}^2) \) of non-constant mappings with distortion \(1 \leq K_h(x) < \infty \), that is
\[|Df_h(x)|^2 \leq [K_h(x) + K_h^{-1}(x)] J(x, f_h) . \]
Our basic assumptions are:
(i) There exists \(\alpha > 1 \) and \(c_0 > 0 \) such that
\[\|K_h\|_{\text{EXP}}(\Omega) \leq c_0 \quad \text{for } h = 1, 2, \ldots . \]
(ii) \(K_h \rightharpoonup K \) weakly in \(L^1(\Omega) \).
(iii) \(f_h \rightharpoonup f = (f^1, f^2) \) weakly in \(W^{1,2}(\Omega, \mathbb{R}^2) \).
By virtue of Theorem 3.1 there exists a subsequence \(A_r(x) = A(x, f_{h_r}) \), \(r = 1, 2, \ldots, \) such that

\[
A(x, f_{h_r}) \Gamma \to A(x)
\]

where \(A(x) \) is a symmetric matrix field satisfying

\[
0 \leq \langle A(x)\xi, \xi \rangle \leq K(x)|\xi|^2.
\]

Our aim here is to prove that \(A(x) \) can be identified with \(A(x, f) \), which is the inverse of the distortion tensor of \(f \):

\[
A(x, f) = [D^t f(x)Df(x)]^{-1}J(x, f).
\]

As a byproduct of our proof, we improve the lower bound at (5.3)

\[
K^{-1}(x)|\xi|^2 \leq \langle A(x)\xi, \xi \rangle
\]

and show that actually the entire sequence \(\{A(x, f_{h})\} \) \(\Gamma \)-converges to \(A(x, f) \).

Theorem 5.1. Under the above assumptions

\[
\int_{\Omega_1} \langle A(x)\nabla f^i, \nabla f^i \rangle \, dx = \lim_{r \to \infty} \int_{\Omega_1} \langle A(x, f_{h_r})\nabla f_{h_r}^i, \nabla f_{h_r}^i \rangle \, dx
\]

on compact subdomains \(\Omega_1 \subset \Omega \), for \(i = 1, 2 \).

Proof. In fact, we have

\[
\int \langle A(x, f)\nabla u, \nabla u \rangle \leq \int K_h|\nabla u|^2 \, dx \leq c\|K_h\|_{\text{EXP,} \alpha(\Omega)}\|\nabla u\|^2_{L^2, \log^{1/\alpha} L(\Omega)}
\]

\[
\leq cC_0\|u\|^2_{W^{1,2}, \log^{1/\alpha} L(\Omega)}.
\]

It then follows that the functionals \((\int_\Omega \langle A(x, f_h)\nabla u, \nabla u \rangle \, dx)^{1/2} \) are equilipschitz in \(W^{1, P}(\Omega) \) with \(P(t) = t^2 \log^{1/\alpha}(e + t) \), a legitimate reason for passing from \(\Gamma \)-convergence to the stronger one

\[
A(x, f_{h_r}) \Gamma \alpha \to A(x);
\]

see [MS] for details.

For \(i = 1, 2 \) fixed, set for simplicity \(u_r = f_{h_r}^i \) and \(u = f^i \). Note that \(u_r \to u \) in \(L^2 \log^{1/\alpha} L(\Omega_1) \). Let now \((v_r) \) be a sequence in \(W^{1, P}(\Omega_1) \) such that \(v_r \to u \) in \(L^2 \log^{1/\alpha} L(\Omega_1) \) and

\[
\lim_{r \to \infty} \int_{\Omega_1} \langle A(x, f_{h_r})\nabla v_r, \nabla v_r \rangle \, dx = \int_{\Omega_1} \langle A(x)\nabla u, \nabla u \rangle \, dx.
\]
Let \(\Omega' \) be an arbitrary compact subdomain of \(\Omega_1 \) and \(\varphi \in C_0^\infty(\Omega_1) \) be such that \(0 \leq \varphi \leq 1 \), \(\varphi \equiv 1 \) in \(\Omega' \); then for every \(t \in]0, 1[\)

\[
\int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \right\rangle \ dx \\
\leq \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla (\varphi v_r + (1 - \varphi) u_r), \nabla (\varphi v_r + (1 - \varphi) u_r) \right\rangle \ dx \\
= \int_{\Omega_1} \left\langle A(x, f_{h_r}) \left\{ \frac{t}{t} (\nabla \varphi)(v_r - u_r) + \frac{1 - t}{1 - t} (\varphi \nabla v_r + (1 - \varphi) \nabla u_r) \right\} \right\rangle \ dx \\
\leq t \int_{\Omega_1} \left\langle A(x, f_{h_r}) \left\{ \frac{1}{t} (\nabla \varphi)(v_r - u_r) \right\} \right\rangle \ dx \\
+ (1 - t) \int_{\Omega_1} \left\langle A(x, f_{h_r}) \left\{ \frac{1}{1 - t} (\varphi \nabla v_r + (1 - \varphi) \nabla u_r) \right\} \right\rangle \ dx \\
\leq \frac{1}{t} \int_{\Omega_1} K |D\varphi|^2 |v_r - u_r|^2 \ dx + \frac{1}{1 - t} \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla v_r, \nabla v_r \right\rangle \varphi \ dx \\
+ \frac{1}{1 - t} \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \right\rangle (1 - \varphi) \ dx.
\]

This yields

\[
(1 - t) \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \right\rangle \ dx \leq \frac{1 - t}{t} c ||v_r - u_r||^2_{L^2 \log^{1/\alpha} L} \cdot ||D\varphi||^2_{L^\infty(\Omega_1)} \\
+ \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla v_r, \nabla v_r \right\rangle \varphi \ dx \\
+ \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \right\rangle (1 - \varphi) \ dx.
\]

The final estimate reads as

\[
\int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla v_r, \nabla v_r \right\rangle \varphi \ dx \geq \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \right\rangle (1 - t - 1 + \varphi) \ dx \\
- \frac{1 - t}{t} c ||D\varphi||^2_{L^\infty(\Omega_1)} \cdot ||v_r - u_r||^2_{L^2 \log^{1/\alpha} L}.
\]

Now, passing to the limit as \(r \to \infty \), we obtain

\[
\int_{\Omega_1} \left\langle A(x) \nabla u, \nabla u \right\rangle \ dx \geq \limsup_{r \to \infty} \int_{\Omega_1} \left\langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \right\rangle (\varphi - t) \ dx.
\]
We let the parameter t go to zero

$$\int_{\Omega_1} \langle A(x) \nabla u, \nabla u \rangle \geq \limsup_{r \to \infty} \int_{\Omega_1} \langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \rangle \varphi \geq \liminf_{r \to \infty} \int_{\Omega'} \langle A(x, f_{h_r}) \nabla u_r, \nabla u_r \rangle \geq \int_{\Omega'} \langle A(x) \nabla u, \nabla u \rangle.$$

Since Ω' was arbitrary, we get (5.5). □

Now we are in a position to rigorously state and prove our main result.

Theorem 5.2. Under the conditions (i), (ii), and (iii), the limit mapping f is either constant or, if not, has finite distortion $K(x)$ and

$$\text{(5.8)} \quad A(x, f_h) \xrightarrow{\Gamma_{\alpha}} A(x, f).$$

Proof. That f has finite distortion $K(x)$ was already established in Section 4. Since we wish to identify the Γ_{α}-limit of $A(x, f_h)$, we can assume that in (5.2) and (5.5) the convergence of the entire sequence holds.

As in the proof of Theorem 5.1, set $u_h = f^i_h$, $u = f^i$, for $i = 1, 2$ and $A_h(x) = A(x, f_h)$.

For the compact subdomain $\Omega_1 \subset \Omega$ consider step functions

$$\text{(5.9)} \quad \varphi = \sum_{j=1}^{\nu} \lambda_j \chi_{B_j}, \quad \lambda_j \geq 0,$$

where B_j are pairwise disjoint open subsets of Ω_1 such that $|\Omega_1 \setminus \bigcup_{j=1}^{\nu} B_j| = 0$.

From (5.5) it follows that

$$\text{(5.10)} \quad \liminf_{h \to \infty} \int_{\Omega_1} \langle A_h(x) \nabla u_h, \nabla u_h \rangle \varphi \, dx \geq \int_{\Omega_1} \langle A(x) \nabla u, \nabla u \rangle \varphi \, dx.$$

Moreover, by an approximation, this also holds if φ is a nonnegative continuous function on $\overline{\Omega}_1$.

Let us now prove more, namely, that (5.10) holds as equality for every continuous function φ in $\overline{\Omega}_1$, not necessarily nonnegative.

Applying (4.4), we infer that the sequence $J(x, f_h) = \langle A_h(x) \nabla u_h, \nabla u_h \rangle$ admits a subsequence weakly converging in $L^1(\Omega_1)$ to a function $E(x)$. Thus

$$\text{(5.11)} \quad \lim_{r \to \infty} \int_{\Omega_1} \langle A_{h_r}(x) \nabla u_{h_r}, \nabla u_{h_r} \rangle \varphi(x) \, dx = \int_{\Omega_1} E(x) \varphi(x) \, dx$$

for any $\varphi \in C^0(\overline{\Omega}_1)$. By (5.10) it follows

$$\text{(5.12)} \quad \int_{\Omega_1} \langle A(x) \nabla u, \nabla u \rangle \varphi(x) \, dx \leq \int_{\Omega_1} E(x) \varphi(x) \, dx.$$
Let S be a measurable subset of Ω_1 and let $(\varphi_k) \subset C^0(\overline{\Omega}_1)$ be such that $\varphi_k(x) \rightarrow \chi_S(x)$ a.e. in Ω_1. Then from the previous relation and the Lebesgue theorem it follows that

\begin{equation}
\int_S \langle A(x)\nabla u, \nabla u \rangle \leq \int_S E(x) \, dx.
\end{equation}

On the other hand we deduce from (5.11) and Theorem 5.1 that

\begin{equation}
\int_{\Omega_1} \langle A(x)\nabla u, \nabla u \rangle \, dx = \int_{\Omega_1} E(x) \, dx.
\end{equation}

Hence

\[E(x) = \langle A(x)\nabla u, \nabla u \rangle \quad \text{a.e. in } \Omega_1. \]

Therefore, we have for the whole sequence

\begin{equation}
\lim_{h \to \infty} \int_{\Omega_1} \langle A(x, f_h)\nabla u_h, \nabla u_h \rangle \varphi \, dx = \int_{\Omega_1} \langle A(x)\nabla u, \nabla u \rangle \varphi \, dx
\end{equation}

for every $\varphi \in C^0(\overline{\Omega}_1)$.

Now we recall from (4.2) that

\begin{equation}
\langle A(x, f_h)\nabla f_h^i(x), \nabla f_h^j(x) \rangle = J(x, f_h)\delta_{ij} \quad \text{a.e. on } \Omega, \ i, j = 1, 2.
\end{equation}

By the symmetry of the matrix $A(x, f_h)$, (5.15), (5.16) and the weak continuity property of Jacobian ([R]) we have

\begin{equation}
\int_{\Omega_1} \langle A(x)\nabla f^i, \nabla f^j \rangle \varphi \, dx = \lim_{h \to \infty} \int_{\Omega_1} \langle A(x, f_h)\nabla f_h^i, \nabla f_h^j \rangle \varphi \, dx
\end{equation}

\[= \lim_{h \to \infty} \int_{\Omega_1} J(x, f_h)\delta_{ij} \varphi \, dx = \int_{\Omega_1} J(x, f)\delta_{ij} \varphi \, dx, \]

where $\varphi \in C^0_0(\Omega_1), \ i, j = 1, 2$. Since φ was arbitrary, it follows that

\begin{equation}
\langle A(x)\nabla f^i(x), \nabla f^j(x) \rangle = J(x, f)\delta_{ij} \quad \text{a.e. in } \Omega_1, \ i, j = 1, 2,
\end{equation}

and consequently, as $J(x, f)$ is a.e. positive,

\begin{equation}
A(x) = J(x, f)[Df(x)^t \cdot Df(x)]^{-1} \quad \text{a.e. in } \Omega_1.
\end{equation}

Since Ω_1 was arbitrary, (5.18) holds a.e. in Ω. Hence (5.8) holds. \(\square\)
6. The Bers–Bojarski theorem

For the sake of brevity we will now confine ourselves to the particular case $K(x) = K \geq 1$ and relate our results to some classical convergence theorems for quasiregular mappings.

Let $G(x, f)$ be defined as in (1.3). No natural continuity result can be traced for the map

$$f \rightarrow G(x, f)$$

of the type obtained in the present paper for the map

$$f \rightarrow A(x, f)$$

unless we consider a convergence $f_h \rightarrow f$ stronger than weak-$W^{1,2}$; see also [LV], [D].

Example 6.1. Let $\psi_h : \mathbb{R} \rightarrow \mathbb{R}$ be a sequence of bounded measurable functions such that $0 < K^{-1} \leq \psi_h(t) \leq K$ and

$$\psi_h \rightharpoonup 1, \quad \frac{1}{\psi_h} \rightharpoonup \frac{1}{c} \quad (c \neq 1),$$

in $\sigma(L^\infty, L^1)$; for example, let us choose

$$\psi_h(t) = 1 + \delta \frac{\sin ht}{|\sin ht|} \quad (0 < \delta < 1).$$

Then, the sequence of K-quasiregular mappings

$$f_h(x_1, x_2) = \left(\int_0^{x_1} \psi_h(t) dt, x_2 \right)$$

converges locally uniformly to the identity mapping $f(x_1, x_2) = (x_1, x_2)$.

It is immediate that the distortion tensor of f_h is

$$G(x, f_h) = \begin{pmatrix} \psi_h(x_1) & 0 \\ 0 & (\psi_h(x_1))^{-1} \end{pmatrix}$$

and the distortion tensor of the limit f is

$$G(x, f) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
The sequence \(G(x, f_h) \) does not converge weakly nor does it \(\Gamma \)-converge to the identity matrix \(G(x, f) \). Actually

\[
G(x, f_h) \rightharpoonup \begin{pmatrix} 1 & 0 \\ 0 & c^{-1} \end{pmatrix} \quad \text{weakly in } L^1(\Omega, \mathbb{R}^{2 \times 2}).
\]

Moreover it can be proved that

\[
G(x, f_h) \xrightarrow{\Gamma} \begin{pmatrix} c & 0 \\ 0 & c^{-1} \end{pmatrix}.
\]

Thus, of the two matrices \(A(x, f) \), \(G(x, f) \) only the first one exhibits a suitable continuity behaviour as a function of \(f \).

In the following we deduce by our results a well-known theorem of Bers–Bojarski for planar \(K \)-quasiregular mappings whose \(n \)-dimensional version has been recently proved in [GMRV] (see also [IK]). The result states that if \(f_h: \Omega \subset \mathbb{R}^2 \to \mathbb{R}^2 \) verify a.e. in \(\Omega \) \((K \geq 1)\)

\[
|Df_h(x)|^2 \leq \left(K + \frac{1}{K}\right)J(x, f_h);
\]

if \(f_h \to f \) locally uniformly and the distortion tensors \(G(x, f_h) \) defined as in (1.3) converge a.e. to \(G_0(x) \) then \(G_0(x) = G(x, f) \). Namely we have the following

Theorem 6.1. Let \(f_h \) be a sequence of mappings of finite distortion \(K \geq 1 \) on \(\Omega \) such that

(i) \(f_h \rightharpoonup f \ in W^{1,2}(\Omega) \),

(ii) \(G(x, f_h) \rightharpoonup G_0(x) \) a.e. in \(\Omega \).

Then

\[G_0(x) = G(x, f) \quad \text{a.e. in } \Omega. \]

We start with

Lemma 6.1. Let \(A_h \) be a sequence of symmetric \(2 \times 2 \) matrices satisfying

\[
\frac{|\xi|^2}{K} \leq \langle A_h(x)\xi, \xi \rangle \leq K|\xi|^2 \quad \text{for a.e. } x \in \Omega.
\]

If

\[
A_h^{-1} \rightharpoonup A_0^{-1} \quad \text{in } L^1(\Omega, \mathbb{R}^{2 \times 2})
\]

and

\[
(6.2) \quad A_h \rightharpoonup A
\]

then

\[A = A_0. \]
Proof. It is easy to check that
\[A_h - A_0 = A_h (A_0^{-1} - A_h^{-1}) A_0. \]
So by our assumptions we deduce
\[A_h \to A_0 \quad \text{in } L^1(\Omega, \mathbb{R}^{2 \times 2}). \]
Since it is well known that strong L^1 convergence of coefficients matrices imply \(\Gamma \)-convergence \([S1]\), we get
\[A_h \rightharpoonup A_0 \]
and therefore, by (6.2)
\[A = A_0. \]

Proof of Theorem 6.1. Theorem 5.2 implies that \(A(x, f_h) \rightharpoonup A(x, f) \). By (ii) and Vitali’s theorem we deduce
\[G(x, f_h) = A(x, f_h)^{-1} \rightharpoonup L^1, G_0(x) = A_0^{-1}(x) \]
so Lemma 6.1 implies \(A(x, f) = A_0(x) = G_0^{-1}(x) \) and this means \(A^{-1}(x, f) = G_0(x) \), that is \(G(x, f) = G_0(x) \).

Actually, L^1-convergence of the coefficient matrix A_h to A implies strong convergence in $W^{1,2}_{\text{loc}}$ of local solutions u_h of the equation
\[\text{div } A_h(x) \nabla u_h = 0 \]
to local solutions u of
\[\text{div } A(x) \nabla u = 0 \]
(see \([S1, \text{Theorem 5}]\)). So, in particular, under our assumptions we deduce $f^i_h \to f^i$ in $W^{1,2}_{\text{loc}}$, for $i = 1, 2$, due to the fact that $\text{div } A_h(x, f_h) \nabla f_h = 0$.

Acknowledgments. I wish to thank Professors Tadeusz Iwaniec and Carlo Sbordone for their generous advice.

References

Received 22 January 1999