MA2341 - Advanced Mechanics 1 Michelmas Term - 2015-2016 Homework 8 - Due Dec. 8th, 2015

1. Determine the principal moments of inertia of a homogeneous cone with height h and mass M for rotations about
(a) the origin at the point of the cone.
(b) the origin at the center of mass of the cone.
2. Prove the identity:

$$
\epsilon_{i j k} \lambda_{j j^{\prime}} \lambda_{k k^{\prime}}=\lambda_{i i^{\prime}} \epsilon_{i^{\prime} j^{\prime} k^{\prime}}
$$

where $\lambda_{i j}$ is a rotation matrix. Hint: you may need the identity

$$
\epsilon_{i j k} A_{i i^{\prime}} A_{j j^{\prime}} A_{k k^{\prime}}=(\operatorname{det} A) \epsilon_{i^{\prime} j^{\prime} k^{\prime}},
$$

where A is a 3×3 matrix. Use this result to demonstrate that the angular momentum transforms like an axial vector, i.e. like a vector under rotations but invariant under the parity transformation.
3. Prove the following by explicitly demonstrating transformation properties under rotations and parity:
(a) $\operatorname{det} I$ is a scalar.
(b) $\operatorname{Tr} I$ is a scalar.
(c) $s=(\vec{A} \times \vec{B}) \cdot \vec{C}$, where \vec{A}, \vec{B}, and \vec{C} are vectors, is a pseudoscalar.

