MA2341 - Advanced Mechanics 1 Michelmas Term - 2015-2016 Homework 6 - Due Nov. 24th, 2015

1. Consider the Kepler problem $(V=-k / r)$ and the vector

$$
\mathbf{A}=\mathbf{p} \times \mathbf{L}-m k \frac{\mathbf{r}}{r} .
$$

(a) Show that \mathbf{A} is conserved.
(b) For an elliptical orbit, give the magnitude and direction of \mathbf{A}.
(c) How many conserved quantities exist for the Kepler problem? How many are independent?
2. Consider a particle of mass m moving in an elliptical orbit in the Kepler problem.
(a) Express the semi-major axis of the ellipse in terms of the conserved quantities of the motion.
(b) Do the same for the semi-minor axis.
(c) Do the same for the orbital period and explicity demonstrate Kepler's Third Law, i.e. that $\tau^{2} \propto a^{3}$.
3. Consider two particles interacting gravitationally and undergoing circular orbits around each other with period τ. Now assume they are instantaneously stopped and released. Prove that they collide after a time $\frac{\tau}{4 \sqrt{2}}$. Hint: you may need the integral

$$
\int \frac{y^{2}}{\sqrt{a-y^{2}}} d y=-\frac{y \sqrt{a-y^{2}}}{2}+\frac{a}{2} \sin ^{-1}\left[\frac{y}{\sqrt{a}}\right] .
$$

