MA2341 - Advanced Mechanics 1 Michelmas Term - 2015-2016 Homework 2 - Due Oct. 20th, 2015

1. Find the Lagrangian and equations of motion for a double pendulum consisting of equal masses m and identical massless rigid rods of length ℓ.
2. Obtain the Hamiltonian form of the Euler-Lagrange equations from their standard form. Consider a system with n degrees of freedom $\left\{q_{i}(t)\right\}$.
3. Consider 'snappy', 'jerky' dynamics (jerk is defined as the time derivative of acceleration, snap is the time derivative of jerk), a generalization of the Lagrange formalism in which the Lagrangian contains second and third time derivatives of the q_{i} as well as first time derivatives. By applying calculus of variations, show that the Euler-Lagrange equations become

$$
-\frac{d^{3}}{d t^{3}}\left(\frac{\partial L}{\partial \ddot{q}_{i}}\right)+\frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial \ddot{q}_{i}}\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{i}}\right)+\frac{\partial L}{\partial q_{i}}=0, \quad i=1,2, \ldots, n
$$

Note that when affecting the variation, additionally the first and second time derivatives of the η_{i} vanish at the endpoints. How can this procedure be extended to obtain the Euler-Lagrange equations with arbitrary time derivatives in the Lagrangian?

Apply this result to the Lagrangian

$$
L=q\left(\gamma \dot{q}-\frac{m}{2} \ddot{q}-\frac{k}{2} q\right)
$$

to calculate the equation of motion. Do you recognize it?
4. (see Landau + Lifshitz, Chap. I, Prob. 2) Consider a simple pendulum of length ℓ and mass m_{2}. Suppose the point of support contains a mass m_{1} and can move horizontally in the plane of pendulum's motion. Find the Lagrangian and equations of motion.

