MA2341 - Advanced Mechanics 1 Michelmas Term - 2015-2016 Homework 1 - Due Oct. 13th, 2015

1. Prove

$$
\boldsymbol{A} \times(\boldsymbol{B} \times \boldsymbol{C})=(\boldsymbol{A} \cdot \boldsymbol{C}) \boldsymbol{B}-(\boldsymbol{A} \cdot \boldsymbol{B}) \boldsymbol{C}
$$

where $\boldsymbol{A}, \boldsymbol{B}$, and \boldsymbol{C} are arbitrary vectors, by using the following property of the Levi-Cevita symbols:

$$
\epsilon_{i j k} \epsilon_{i \ell m}=\delta_{j \ell} \delta_{k m}-\delta_{j m} \delta_{k \ell}
$$

2. Consider a scalar function of position and time $\phi(\boldsymbol{r}, t)$ and as well as a vector function of position and time $\boldsymbol{A}(\boldsymbol{r}, t)$. A particle moves in three dimensions under the influence of the (velocity- and time-dependent) potential

$$
V=q \phi-q \dot{x}_{i} A_{i}
$$

(a) Find the Lagrangian and equations of motions for the particle.
(b) Express the equations of motion in terms of

$$
E_{i}=-\frac{\partial \phi}{\partial x_{i}}-\frac{\partial A_{i}}{\partial t}
$$

and

$$
B_{i}=\epsilon_{i j k} \frac{\partial A_{k}}{\partial x_{j}}
$$

Do they look familiar? Hint: you may need the identity from problem 1.
3. Consder the Lagrangian

$$
L=\frac{m}{2} \dot{\boldsymbol{r}}^{2}-V(\boldsymbol{r})
$$

(a) How does the change

$$
L \rightarrow L+2 \boldsymbol{r} \cdot \dot{\boldsymbol{r}}
$$

affect the equations of motion? Calculate explicitly the equations of motion with the changed and unchanged Lagrangian.
(b) More generally, for a system with degrees of freedom $\left\{q_{i}\right\}$ prove that the change

$$
L \rightarrow L+\frac{d f}{d t},
$$

where $f(q, t)$ is an arbitrary scalar function, leaves the equations of motion invariant.

