5613B - Introduction to C++4
Hilary Term - 2014-2015
Homework 1 - Due Feb. 9th, 2015

1. In analogy to the Vector container class, write a Matrix container class repre-
senting a double precision matrix with a number of rows and columns which is
determined at run-time. This class should have the following functionality:

(a) a constructor which takes two integers representing the size of the matrix.
(b) nrow(), ncol() members which return the size of the matrix.

(c) an overloaded () operator which takes two integers and returns the corre-
sponding matrix element, so that element (7, j) of matrix a can be accessed
as a(i,j).

(d) an overloaded *= operator taking a double precision argument to rescale
each matrix element, so that all elements of the matrix a can be multi-
plied by a double d via the statement a *= d;. Enable the possibility of
compound expressions by having this member function return a reference
to the current state of the class using the *this pointer.

Note that this class should safely cleanup any resources it allocates and members
which do not change the internal state of the class should be accessible in
modules to which const arguments are passed.

2. Write some additional functions (not members of the class) which use Matrix:
(a) a function mult(a,b,c) (a, b, and ¢ are matrices) which performs the

matrix multiplication a = b X c.

(b) a function add(a,b,c) (a, b, and c are matrices) which performs element-
wise matrix addition a = b+ c.

(c) an overloaded stream insertion operator with function declaration

ostream& operator<< (ostream& strm, const Matrix& mat);

which writes the matrix elements to an output stream and returns the
stream afterward.

(d) an overloaded stream extraction operator with function declaration

istream& operator>> (istream& strm, Matrix& mat);

which reads and assigns the matrix elements from an input stream and
returns the stream afterward.

(e) overloaded !'= and == operators which compare two matrices. You may
find the following C++ floating-point comparison function useful:



#include <limits>
#include <cmath>

bool not_equal(const double& a, const double& b) {

return std::abs(a-b)>(std::abs(std::min(a,b))*
std::numeric_limits<double>::epsilon()*20.0);

These functions can be declared in matrix.h and defined in matrix.cc, or
declared in a separate header (e.g. matrix_utils.h) and defined in a separate
.cc file (e.g. matrix_utils.cc).

3. Write a main program which tests all the functionality of the previous parts.
In particular, a good test might be to write a matrix out to a file, read it in to
another matrix, and test if the resulting matrices are equal.



