Modules MA3411 and MA3412: Annual
 Examination
 Course outline and worked solutions

David R. Wilkins
February 13, 2012

Course Website

The module websites, with online lecture notes, problem sets. etc. are located at
http://www.maths.tcd.ie/~dwilkins/Courses/MA3411/
http://www.maths.tcd.ie/~dwilkins/Courses/MA3412/

Course Outline: MA3411

1 Basic Principles of Group Theory 1

1.1 Groups . 1
1.2 Subgroups . 2
1.3 Cosets and Lagrange's Theorem 2
1.4 Normal Subgroups and Quotient Groups 4
1.5 Homomorphisms . 5
1.6 The Isomorphism Theorems 7

2 Basic Principles of Ring Theory 8
2.1 Rings . 8
2.2 Integral Domains and Fields 9
2.3 Ideals . 10
2.4 Quotient Rings and Homomorphisms 12
2.5 The Characteristic of a Ring 14

3 Polynomial Rings 16
3.1 Polynomials with Coefficients in a Ring 16
3.2 Gauss's Lemma . 21
3.3 Eisenstein's Irreducibility Criterion 23

4 Field Extensions 25
4.1 Field Extensions and the Tower Law 25
4.2 Algebraic Field Extensions . 26
4.3 Algebraically Closed Fields . 30

5 Ruler and Compass Constructions 31
5.1 Three Famous Geometrical Problems 31
5.2 The Field of Constructible Numbers 31
5.3 Proofs of the Impossibility of performing certain Geometrical
Constructions with Straightedge and Compasses 38
6 Splitting Fields and the Galois Correspondence 44
6.1 Splitting Fields 44
6.2 Normal Extensions 47
6.3 Separability 48
6.4 Finite Fields 50
6.5 The Primitive Element Theorem 52
6.6 The Galois Group of a Field Extension 53
6.7 The Galois correspondence 57
7 Roots of Polynomials of Low Degree 59
7.1 Quadratic Polynomials 59
7.2 Cubic Polynomials 59
7.3 Quartic Polynomials 61
7.4 The Galois group of the polynomial $x^{4}-2$ 64
7.5 The Galois group of a polynomial 65
8 Some Results from Group Theory 67
8.1 The Class Equation of a Finite Group 67
8.2 Cauchy's Theorem 67
8.3 Simple Groups 68
8.4 Solvable Groups 70
9 Galois's Theorem concerning the Solvability of Polynomial Equations 73
9.1 Solvable polynomials and their Galois groups 73
9.2 A quintic polynomial that is not solvable by radicals 77
The class will be informed with regard to examinable material, which islikely to consist formally of sections $3,4,6$ and 7 , and possibly portions of 5 .
Course Outline: MA3412
10 Integral Domains 1
10.1 Factorization in Integral Domains 1
10.2 Euclidean Domains 4
10.3 Principal Ideal Domains 6
10.4 Unique Factorization in Principal Ideal Domains 7
11 Noetherian Modules 9
11.1 Modules over a Unital Commutative Ring 9
11.2 Noetherian Modules 10
11.3 Noetherian Rings and Hilbert's Basis Theorem 13
12 Finitely-Generated Modules over Principal Ideal Domains 17
12.1 Linear Independence and Free Modules 17
12.2 Free Modules over Integral Domains 21
12.3 Torsion Modules 23
12.4 Free Modules of Finite Rank over Principal Ideal Domains 24
12.5 Torsion-Free Modules 25
12.6 Finitely-Generated Torsion Modules over Principal Ideal Do- mains 27
12.7 Cyclic Modules and Order Ideals 31
12.8 The Structure Theorem for Finitely-Generated Modules over Principal Ideal Domains 32
12.9 The Jordan Normal Form 36
13 Algebraic Numbers and Algebraic Integers 39
13.1 Basic Properties of Field Extensions 39
13.2 Algebraic Numbers and Algebraic Integers 40
13.3 Number Fields and the Primitive Element Theorem 42
13.4 Rings of Algebraic Numbers 42

1. (a) [Bookwork.] If $I=\{0\}$ then we can take $f=0$. Otherwise choose $f \in I$ such that $f \neq 0$ and the degree of f does not exceed the degree of any non-zero polynomial in I. Then, for each $h \in I$, there exist polynomials q and r in $K[x]$ such that $h=f q+r$ and either $r=0$ or else $\operatorname{deg} r<\operatorname{deg} f$. But $r \in I$, since $r=h-f q$ and h and f both belong to I. The choice of f then ensures that $r=0$ and $h=q f$. Thus $I=(f)$.
(b) [Bookwork.] Let I be the ideal in $K[x]$ generated by $f_{1}, f_{2}, \ldots, f_{k}$. It follows that the ideal I is generated by some polynomial d. Then d divides all of $f_{1}, f_{2}, \ldots, f_{k}$ and is therefore a constant polynomial, since these polynomials are coprime. It follows that $I=K[x]$. But the ideal I of $K[x]$ generated by $f_{1}, f_{2}, \ldots, f_{k}$ coincides with the subset of $K[x]$ consisting of all polynomials that may be represented as finite sums of the form

$$
f_{1}(x) g_{1}(x)+f_{2}(x) g_{2}(x)+\cdots+f_{k}(x) g_{k}(x)
$$

for some polynomials $g_{1}, g_{2}, \ldots, g_{k}$. It follows that the constant polynomial with value 1_{K} may be expressed as a sum of this form, as required.
(c) [Bookwork.] Suppose that $f(x)=g(x) h(x)$, where g and h are polynomials with integer coefficients. Let

$$
g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{r} x^{r}
$$

and

$$
h(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{s} x^{s} .
$$

Then $a_{0}=b_{0} c_{0}$. Now a_{0} is divisible by p but is not divisible by p^{2}. Therefore exactly one of the coefficients b_{0} and c_{0} is divisible by p. Suppose that p divides b_{0} but does not divide c_{0}. Now p does not divide all the coefficients of $g(x)$, since it does not divide all the coefficients of $f(x)$. Let j be the smallest value of i for which p does not divide b_{i}. Then p divides $a_{j}-b_{j} c_{0}$, since

$$
a_{j}-b_{j} c_{0}=\sum_{i=0}^{j-1} b_{i} c_{j-i}
$$

and b_{i} is divisible by p when $i<j$. But $b_{j} c_{0}$ is not divisible by p, since p is prime and neither b_{j} nor c_{0} is divisible by p. Therefore a_{j} is not divisible by p, and hence $j=n$ and $\operatorname{deg} g \geq n=\operatorname{deg} f$. Thus $\operatorname{deg} g=\operatorname{deg} f$ and $\operatorname{deg} h=0$. Thus the polynomial f does not factor as a product of polynomials of lower degree with integer coefficients.
(d) [Not bookwork.] It follows from Eisenstein'c Criterion for irreducibility that the polynomial $s x^{2}-p$ does not factor as a product of polynomials of lower degree with integer coefficients (see (c)), and is thus irreducible over the field $\mathbb{Q}[x]$ of rational numbers. If \sqrt{q} were a rational number then this polynomial would factor over \mathbb{Q} as $s(x+\sqrt{q})(x-\sqrt{q})$. Therefore \sqrt{q} must be irrational.
2. (a) [Definitions.] A field extension $L: K$ consists of two fields K and L, where K is a subfield of L. This field extension is finite if L is a finite-dimensional vector space over the subfield K. The degree of a finite field extension $[L: K]$ is the dimension of L as a vector sapce over K. A field extension $L: K$ is simple if there exists $\alpha \in L$ such that $L=K(\alpha)$ (so that there is no proper subfield of L that contains the set $K \cup\{\alpha\})$.
(b) [Bookwork.] Let $z, w \in K[\alpha]$. Then there exist polynomials f and g with coefficients in K such that $z=f(\alpha)$ and $w=g(\alpha)$. Then $z+w=(f+g)(\alpha), z-w=(f-g)(\alpha)$ and $z w=(f g)(\alpha)$. Thus $z+w \in K[\alpha], z-w \in K[\alpha]$ and $z w \in K[\alpha]$ for all $z, w \in K[\alpha]$. Also $K \subset K[\alpha]$, because each element of K is the value, at α, of the corresponding constant polynomial. Thus $K[\alpha]$ is a unital ring. It is also commutative. It only remains to verify that the inverse of every non-zero element of $K[\alpha]$ belongs to this ring.
Let z be a non-zero element of $K[\alpha]$. Then $z=f(\alpha)$ for some polynomial f with coefficients in K. Let m_{α} denote the minimum polynomial of α. Then f is not divisible by m_{α} (because $z \neq 0$ and $m_{\alpha}(\alpha)=0$). Moreover m_{α} is an irreducible polynomial. It follows that the polynomials f and m_{α} must be coprime, and therefore there exist polynomials $g, h \in K[X]$ such that $f(x) g(x)+$ $m_{\alpha}(x) h(x)=1_{K}$, where 1_{K} denotes the multiplicative identity element of the field K. But then

$$
1_{K}=f(\alpha) g(\alpha)+m_{\alpha}(\alpha) h(\alpha)=f(\alpha) g(\alpha),
$$

because $m_{\alpha}(\alpha)=0$. This shows that $z^{-1}=g(\alpha)$. We conclude that $z^{-1} \in K[\alpha]$ for all non-zero elements z of $K[\alpha]$. It follows that $K[\alpha]$ is a field, and is thus a subfield of L, as required.
(c) [Bookwork.] Let m_{α} denote the minimum polynomial of α over K, and let $n=\operatorname{deg} m_{\alpha}$. Now $K[\alpha]$ is a subfield of $K(\alpha)$, where

$$
K[\alpha]=\{f(\alpha): f \in K[x]\} .
$$

But $K(\alpha)$ has no proper subfield that contains $K \cup\{\alpha\}$. Therefore $K[\alpha]=K(\alpha)$, and thus, given any element z of $K(\alpha)$, there exists some polynomial h with coefficients in K such that $z=h(\alpha)$. It then follows from a standard result that there exist polynomials q and f with coefficients in K such that $h=q m_{\alpha}+f$, where either $f=0$ or $\operatorname{deg} f<n$ (where $n=\operatorname{deg} m_{\alpha}$). But then

$$
z=h(\alpha)=q(\alpha) m_{\alpha}(\alpha)+f(\alpha)=f(\alpha),
$$

because α is a root of its minimum polynomial m_{α}. We have thus shown that every element of $K(\alpha)$ can be represented in the form $f(\alpha)$, where f is a polynomial with coefficients in K, and either $f=0$ or else $\operatorname{deg} f<n$. This polynomial f is uniquely determined, for if $f(\alpha)=g(\alpha)$, where f and g are polynomials of degree less than n, then m_{α} divides $f-g$, and therefore $f-g=0$. We conclude from this that, given any element z of $K(\alpha)$, there exist uniquely determined elements $c_{0}, c_{1}, \ldots, c_{n-1}$ of K such that $z=\sum_{j=0}^{n-1} c_{j} \alpha^{j}$. This shows that $1_{K}, \alpha, \ldots, \alpha^{n-1}$ is a basis for $K(\alpha)$ as a vector space over K, where $n=\operatorname{deg} m_{\alpha}$. Thus the extension $K(\alpha): K$ is finite, and $[K(\alpha): K]=\operatorname{deg} m_{\alpha}$, as required.
3. (a) [Definitions.] Let $L: K$ be a field extension, and let $f \in K[x]$ be a polynomial with coefficients in K. The polynomial f splits over L if there exist elements $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d} \in L$ and $c \in K$ such that

$$
f(x)=c\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{d}\right)
$$

The field L is said to be a splitting field for f over K if the following conditions are satisfied:-

- the polynomial f splits over L;
- the polynomial f does not split over any proper subfield of L that contains the field K.
(b) [Bookwork.] The Binomial Theorem tells us that $(x+y)^{p}=$ $\sum_{j=0}^{p}\binom{p}{j} x^{j} y^{p-j}$, where $\binom{p}{0}=1$ and $\binom{p}{j}=\frac{p(p-1) \cdots(p-j+1)}{j!}$ for $j=1,2, \ldots, p$. The denominator of each binomial coefficient must divide the numerator, since this coefficient is an integer. Now the characteristic p of K is a prime number. Moreover if $0<j<p$ then p is a factor of the numerator but is not a factor of the denominator. It follows from the Fundamental Theorem of Arithmetic that p divides $\binom{p}{j}$ for all j satisfying $0<j<p$. But $p x=0$ for all $x \in K$, since char $K=p$. Therefore $(x+y)^{p}=x^{p}+y^{p}$ for all $x, y \in K$.
(c) [Bookwork.] Suppose that K has q elements, where $q=p^{n}$. If $\alpha \in K \backslash\{0\}$ then $\alpha^{q-1}=1$, since the set of non-zero elements of K is a group of order $q-1$ with respect to multiplication. It follows that $\alpha^{q}=\alpha$ for all $\alpha \in K$. Thus all elements of K are roots of the polynomial $x^{q}-x$. This polynomial must therefore split over K, since its degree is q and K has q elements. Moreover the polynomial cannot split over any proper subfield of K. Thus K is a splitting field for this polynomial.
Conversely suppose that K is a splitting field for the polynomial f over \mathbb{F}_{p}, where $f(x)=x^{q}-x$ and $q=p^{n}$. Let $\sigma(\alpha)=\alpha^{q}$ for all $\alpha \in$ K. Then $\sigma: K \rightarrow K$ is a monomorphism, being the composition of n successive applications of the Frobenius monomorphism of K. Moreover an element α of K is a root of f if and only if $\sigma(\alpha)=\alpha$. It follows from this that the roots of f constitute a subfield of K. This subfield is the whole of K, since K is a splitting field. Thus K consists of the roots of f. Now q is divisible by the characteristic p
of \mathbb{F}_{p}, and therefore

$$
D f(x)=q \cdot 1_{K} x^{q-1}-1_{K}=-1_{K},
$$

where 1_{K} denotes the identity element of the field K. It follows from a standard result that the roots of f are distinct. Therefore f has q roots, and thus K has q elements, as required.
4. [Not bookwork - a similar problem was examined in the year 2000.]
(a) The roots of the polynomial $x^{3}-5$ are $\xi, \omega \xi$, and $\omega^{2} \xi$, and therefore the polynomial $x^{3}-5$ splits over L, as

$$
(x-\xi)(x-\omega \xi)\left(x-\omega^{2} \xi\right)
$$

If the polynomial splits over any subfield of L, that subfield would be an extension field of \mathbb{Q} and would contain ξ and $\omega \xi$, and thus would also contain ω, since $\omega=(\omega \xi) / \xi$. The subfield would therefore be the whole of L. Thus L is a splitting field for $x^{3}-5$ over \mathbb{Q}.
(b) The polynomial $x^{3}-5$ is irreducible over \mathbb{Q}, by Eisenstein's criterion. Therefore $[\mathbb{Q}(\xi): \mathbb{Q}]=3$. Also ω is a root of the irreducible polynomial $x^{2}+x+1$ and therefore $[\mathbb{Q}(\omega): \mathbb{Q}]=2$. It follows that $[L: \mathbb{Q}]$ is divisible by 2 and 3 , and thus by 6 . But $[\mathbb{Q}(\xi, \omega): \mathbb{Q}(\xi)]=1$ or 2 . It follows from the above and from the Tower Law that $[L: \mathbb{Q}]=6,[L: \mathbb{Q}(\omega)]=3,[L: \mathbb{Q}(\xi)]=2$. Using a standard result, we see that $x^{3}-5$ is the minimum polynomial of ξ over $\mathbb{Q}(\omega)$, and $x^{2}+x+1$ is the minumum polynomial of ω over $\mathbb{Q}(\xi)$. It now follows from a standard theorem that there exists an automorphism σ of L which fixes $\mathbb{Q}(\omega)$ and maps the root ξ of $x^{3}-5$ to the root $\omega \xi$ of the same polynomial. Similarly there exists an automorphism τ of L that fixes $\mathbb{Q}(\xi)$ and sends the root ω of $x^{2}+x+1$ to the other root ω^{2} of this polynomial.
(c)

$$
\begin{aligned}
\sigma^{2}(\xi) & =\sigma(\omega \xi)=\omega \sigma(\xi)=\omega^{2} \xi, \\
\sigma^{2}(\omega) & =\omega \\
\sigma^{3}(\xi) & =\sigma\left(\omega^{2} \xi\right)=\omega^{2} \sigma(\xi)=\omega^{3} \xi=\xi, \\
\sigma^{3}(\omega) & =\omega \\
\tau^{2}(\xi) & =\xi \\
\tau^{2}(\omega) & =\tau\left(\omega^{2}\right)=\omega^{4}=\omega, \\
\sigma \tau(\xi) & =\sigma(\xi)=\omega \xi \\
\sigma \tau(\omega) & =\sigma\left(\omega^{2}\right)=\omega^{2}, \\
\sigma^{2} \tau(\xi) & =\sigma(\omega \xi)=\omega^{2} \xi, \\
\sigma^{2} \tau(\omega) & =\sigma\left(\omega^{2}\right)=\omega^{2} .
\end{aligned}
$$

(d)

$$
\begin{gathered}
\tau \sigma \tau(\xi)=\tau(\omega \xi)=\omega^{2} \xi=\sigma^{2}(\xi) \\
\tau \sigma \tau(\omega)=\tau\left(\omega^{2}\right)=\omega=\sigma^{2}(\omega)
\end{gathered}
$$

Thus the fixed field of $\sigma^{-2} \tau \sigma \tau$ contains \mathbb{Q} and the elements ξ and ω, and is thus the whole of L. Thus $\tau \sigma \tau=\sigma^{2}$.
(e) $\Gamma(L: Q)=[L: K]=6$, by the Galois correspondence. Alternatively note that $\iota, \sigma, \sigma^{2}, \tau, \sigma \tau, \sigma^{2} \tau$ are distinct, and the set of these elements is closed under composition and is thus a group. All possibilities for the images of ξ and ω are obtained by elements of this set, and thus this group is the whole Galois group.
5. (a) [From course notes.] Let R be a unital commutative ring. A set M is said to be a module over R (or R-module) if
(i) given any $x, y \in M$ and $r \in R$, there are well-defined elements $x+y$ and $r x$ of M,
(ii) M is an Abelian group with respect to the operation + of addition,
(iii) the identities

$$
\begin{gathered}
r(x+y)=r x+r y, \quad(r+s) x=r x+s x, \\
(r s) x=r(s x), \quad 1 x=x
\end{gathered}
$$

are satisfied for all $x, y \in M$ and $r, s \in R$.
(b) [From course notes.] Suppose that M satisfies the Ascending Chain Condition. Let \mathcal{C} be a non-empty collection of submodules of M. Choose $L_{1} \in \mathcal{C}$. If \mathcal{C} were to contain no maximal element then we could choose, by induction on n, an ascending chain $L_{1} \subset L_{2} \subset L_{3} \subset \cdots$ of submodules belonging to \mathcal{C} such that $L_{n} \neq L_{n+1}$ for all n, which would contradict the Ascending Chain Condition. Thus M must satisfy the Maximal Condition.
Next suppose that M satisfies the Maximal Condition. Let L be an submodule of M, and let \mathcal{C} be the collection of all finitelygenerated submodules of M that are contained in L. Now the zero submodule $\{0\}$ belongs to \mathcal{C}, hence \mathcal{C} contains a maximal element J, and J is generated by some finite subset $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ of M. Let $x \in L$, and let K be the submodule generated by $\left\{x, a_{1}, a_{2}, \ldots, a_{k}\right\}$. Then $K \in \mathcal{C}$, and $J \subset K$. It follows from the maximality of J that $J=K$, and thus $x \in J$. Therefore $J=L$, and thus L is finitely-generated. Thus M must satisfy the Finite Basis Condition.
Finally suppose that M satisfies the Finite Basis Condition. Let $L_{1} \subset L_{2} \subset L_{3} \subset \cdots$ be an ascending chain of submodules of M, and let L be the union $\bigcup_{n=1}^{+\infty} L_{n}$ of the submodules L_{n}. Then L is itself an submodule of M. Indeed if a and b are elements of L then a and b both belong to L_{n} for some sufficiently large n, and hence $a+b,-a$ and $r a$ belong to L_{n}, and thus to L, for all $r \in M$. But the submodule L is finitely-generated. Let $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be a generating set of L. Choose N large enough to ensure that $a_{i} \in L_{N}$ for $i=1,2, \ldots, k$. Then $L \subset L_{N}$, and hence $L_{N}=L_{n}=L$ for all $n \geq N$. Thus M must satisfy the Ascending Chain Condition, as required.
(c) [Not bookwork - not in course notes.] Let L be a submodule of N, and let $K=\varphi^{-1}(L)$. Now every submodule of M is finitelygenerated, because M is Noetherian. Therefore K is a finitelygenerated submodule of M. Let $g_{1}, g_{2}, \ldots, g_{m}$ be a generating set for K. Then $\varphi\left(g_{1}\right), \varphi\left(g_{2}\right), \ldots, \varphi\left(g_{m}\right)$ is a generating set for L.
6. (a) [Definitions.] Let M be a module over an integral domain R. The module M is torsion-free if $r m \neq 0_{M}$ for all $r \in R$ and $m \in M$ satisfying $r \neq 0_{R}$ and $m \neq 0_{M}$ (where 0_{R} and 0_{M} denote the zero elements of R and M respectively). The module M is a free module of finite rank if there exists a finite set $b_{1}, b_{2}, \ldots, b_{k}$ over elements of M that is a free basis of M, so that, given any element $m \in M$, there exist uniquely-determined elements $r_{1}, r_{2}, \ldots, r_{k}$ of R such that

$$
m=r_{1} b_{1}+r_{2} b_{2}+\cdots+r_{k} b_{k} .
$$

The integral domain R is a principal ideal domain if, given any ideal of R, there exists some element of R that generates the ideal.
(b) [Bookwork.] It follows from a standard result stated on the examination paper that if M is generated by a finite set with k elements, then no linearly independent subset of M can have more than k elements. Therefore there exists a linearly independent subset of M which has at least as many elements as any other linearly independent subset of M. Let the elements of this subset be $b_{1}, b_{2}, \ldots, b_{p}$, where $b_{i} \neq b_{j}$ whenever $i \neq j$, and let F be the submodule of M generated by $b_{1}, b_{2}, \ldots, b_{p}$. The linear independence of $b_{1}, b_{2}, \ldots, b_{p}$ ensures that every element of F may be represented uniquely as a linear combination of $b_{1}, b_{2}, \ldots, b_{p}$. It follows that F is a free module over R with basis $b_{1}, b_{2}, \ldots, b_{p}$.
Let $m \in M$. The choice of $b_{1}, b_{2}, \ldots, b_{p}$ so as to maximize the number of members in a list of linearly-independent elements of M ensures that the elements $b_{1}, b_{2}, \ldots, b_{p}, m$ are linearly dependent. Therefore there exist elements $s_{1}, s_{2}, \ldots, s_{p}$ and r of R, not all zero, such that

$$
s_{1} b_{1}+s_{2} b_{2}+\cdots+s_{p} b_{p}-r m=0_{M}
$$

(where 0_{M} denotes the zero element of M). If it were the case that $r=0_{R}$, where 0_{R} denotes the zero element of R, then the elements $b_{1}, b_{2}, \ldots, b_{p}$ would be linearly dependent. The fact that these elements are chosen to be linearly independent therefore ensures that $r \neq 0_{R}$. It follows from this that, given any element m of M, there exists a non-zero element r of R such that $r m \in F$. Then $r(m+F)=F$ in the quotient module M / F. We have thus shown that the quotient module M / F is a torsion module. It is also finitely-generated, since M is finitely generated. It follows from a standard result that there exists some non-zero element t of the
integral domain R such that $t(m+F)=F$ for all $m \in M$. Then $t m \in F$ for all $m \in M$.
Let $\varphi: M \rightarrow F$ be the function defined such that $\varphi(m)=t m$ for all $m \in M$. Then φ is a homomorphism of R-modules, and its image is a submodule of F. Now the requirement that the module M be torsion-free ensures that $t m \neq 0_{M}$ whenever $m \neq$ 0_{M}. Therefore $\varphi: M \rightarrow F$ is injective. It follows that $\varphi(M) \cong M$. Now R is a principal ideal domain, and any submodule of a free module of finite rank over a principal ideal domain is itself a free module of finite rank. Therefore $\varphi(M)$ is a free module. But this free module is isomorphic to M. Therefore the finitely-generated torsion-free module M must itself be a free module of finite rank, as required.
7. The result is immediate if $s=1$. Suppose that $s>1$. Let $v_{i}=\prod_{j \neq i} p_{j}^{k_{j}}$ for $i=1,2, \ldots, s$ (so that v_{i} is the product of the factors $p_{j}^{k_{j}}$ of t for $j \neq i$). Then, for each integer i between 1 and s, the elements p_{i} and v_{i} of R are coprime, and $t=v_{i} p_{i}^{k_{i}}$. Moreover any prime element of R that that is a common divisor $v_{1}, v_{2}, \ldots, v_{s}$ must be an associate of one the prime elements $p_{1}, p_{2}, \ldots, \ldots, p_{s}$ of R. But p_{i} does not divide v_{i} for $i=1,2, \ldots, s$. It follows that no prime element of R is a common divisor of $v_{1}, v_{2}, \ldots, v_{s}$, and therefore any common divisor of these elements of R must be a unit of R (i.e., the elements $v_{1}, v_{2}, \ldots, v_{s}$ of R are coprime). It follows from a standard result that there exist elements $w_{1}, w_{2}, \ldots, w_{s}$ of R such that

$$
v_{1} w_{1}+v_{2} w_{2}+\cdots+v_{s} w_{s}=1_{R}
$$

where 1_{R} denotes the multiplicative identity element of R.
Let $q_{i}=v_{i} w_{i}$ for $i=1,2, \ldots, s$. Then $q_{1}+q_{2}+\cdots+q_{s}$, and therefore

$$
m=\sum_{i=1}^{s} q_{i} m
$$

for all $m \in M$. Now t is the product of the elements $p_{i}^{k_{i}}$ for $i=$ $1,2, \ldots, s$. Also $p_{j}^{k_{j}}$ divides v_{i} and therefore divides q_{i} whenever $j \neq i$. It follows that t divides $p_{i}^{k_{i}} q_{i}$ for $i=1,2, \ldots, t$, and therefore $p_{i}^{k_{i}} q_{i} m=$ 0_{M} for all $m \in M$. Thus $q_{i} m \in M_{i}$ for $i=1,2, \ldots, s$, where

$$
M_{i}=\left\{m \in M: p_{i}^{k_{i}} m=0_{M .}\right\}
$$

It follows that the homomorphism

$$
\varphi: M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s} \rightarrow M
$$

from $M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s}$ to M that sends $\left(m_{1}, m_{2}, \ldots, m_{s}\right)$ to $m_{1}+m_{2}+$ $\cdots+m_{s}$ is surjective. Let $\left(m_{1}, m_{2}, \ldots, m_{s}\right) \in \operatorname{ker} \varphi$. Then $p_{i}^{k_{i}} m_{i}=0$ for $i=1,2, \ldots, s$, and

$$
m_{1}+m_{2}+\cdots+m_{s}=0_{M}
$$

Now $v_{i} m_{j}=0$ when $i \neq j$ because $p_{j}^{k_{j}}$ divides v_{i}. It follows that $q_{i} m_{j}=0$ whenever $i \neq j$, and therefore

$$
m_{j}=q_{1} m_{j}+q_{2} m_{j}+\cdots+q_{s} m_{j}=q_{j} m_{j}
$$

for $j=1,2, \ldots, s$. But then

$$
0_{M}=q_{i}\left(m_{1}+m_{2}+\cdots+m_{s}\right)=q_{i} m_{i}=m_{i} .
$$

Thus $\operatorname{ker} \varphi=\left\{\left(0_{M}, 0_{M}, \ldots, 0_{m}\right)\right\}$. We conclude that the homomorphism

$$
\varphi: M_{1} \oplus M_{2} \oplus \cdots \oplus M_{s} \rightarrow M
$$

is thus both injective and surjective, and is thus an isomorphism.
Moreover M_{i} is finitely-generated for $i=1,2, \ldots, s$. Indeed $M_{i}=$ $\left\{q_{i} m: m \in M\right\}$. Thus if the elements $f_{1}, f_{2}, \ldots, f_{n}$ generate M then the elements $q_{i} f_{1}, q_{i} f_{2}, \ldots, q_{i} f_{n}$ generate M_{i}. The result follows.
8. (a) [Definition.] A complex number θ is an algebraic integer if it is a root of a monic polynomial with integer coefficients.
(b) [Examples. Not intended as bookwork - similar if not identical examples may be discussed in class.] The algebraic numbers $\sqrt{7}$, $\frac{1}{\sqrt{2}},-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ and $\frac{1}{2}+\frac{1}{2} i$ are roots of the following polynomials: (i) $x^{2}-7$; (ii) $x^{2}-\frac{1}{2}$; (iii) $x^{2}+x+1$; (iv) $x^{2}-x+\frac{1}{2}$. These polynomials have rational coefficients and are irreducible over the field \mathbb{Q} of rational numbers. These polynomials are thus the minimum polynomials of the respective algebraic numbers. It follows from Gauss' Lemma that an algebraic number is an algebraic integer if and only if its minimum polynomial has integer coefficients. On that basis (i) and (iii) are algebraic numbers, and (ii) and (iv) are not.
(c) [Based on lecture notes.] The ring R is a torsion-free Abelian group, because it is a contained in the field of complex numbers. Therefore R is both finitely-generated and torsion-free, and is therefore a free Abelian group of finite rank. It follows that there exist elements $b_{1}, b_{2}, \ldots, b_{m}$ of R such that every element z of R can be represented in the form

$$
z=n_{1} b_{1}+n_{2} b_{2}+\cdots+n_{m} b_{m}
$$

for some uniquely-determined (rational) integers $n_{1}, n_{2}, \ldots, n_{m}$. Let $\theta \in R$. Then there exist (rational) integers $M_{j k}(\theta)$ for $1 \leq$ $j, k \leq m$ such that

$$
\theta b_{k}=\sum_{j=1}^{n} M_{j k}(\theta) b_{j}
$$

for $k=1,2, \ldots, m$. It follows that

$$
\sum_{j=1}^{n}\left(\theta I_{j k}-M_{j k}(\theta)\right)=0
$$

where

$$
I_{j k}= \begin{cases}1 & \text { if } j=k \\ 0 & \text { if } j \neq k\end{cases}
$$

Let $\theta I-M(\theta)$ be the $n \times n$ matrix with integer coefficients whose entry in the j th row and k th column is $\theta I_{j k}-M_{j k}(\theta)$, and let b be the row-vector of complex numbers defined such that $b=$ $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$. Then $b(\theta I-M(\theta))=0$. It follows that the transpose of b is an eigenvector of the transpose of the matrix $\theta I-M(\theta)$,
and therefore θ is an eigenvalue of the matrix $M(\theta)$. But then $\operatorname{det}(\theta I-M(\theta))=0$, since every eigenvalue of a square matrix is a root of its characteristic equation. Moreover

$$
\operatorname{det}(\theta I-M(\theta))=\theta^{n}+a_{n-1} \theta^{n-1}+\cdots+a_{1} \theta+a_{0}
$$

and thus $f_{\theta}(\theta)=0$, where

$$
f_{\theta}(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} .
$$

Moreover each of the coefficients $a_{0}, a_{1}, \ldots, a_{n-1}$ can be expressed as the sum of the determinants of matrices obtained from M by omitting appropriate rows and columns, multiplied by ± 1. It follows that each of the coefficients $a_{0}, a_{1}, \ldots, a_{n-1}$ is a (rational) integer. Thus each element θ of R is the root of a monic polynomial f_{θ} with (rational) integer coefficients, and is thus an algebraic integer, as required.

