MA3412, Hilary Term 2010. Problems concerning Rings, Modules and Algebraic Sets

1. Factorize the following Gaussian integers as products of irreducible elements of the ring $\mathbb{Z}[\sqrt{-1}]: 5,3+4 i, 14,7+6 i$.

2 . Let R be a unital commutative ring.
(a) Let I, J and K be ideals of R. Verify that

$$
\begin{gathered}
I+J=J+I, \quad I J=J I, \\
(I+J)+K=I+(J+K), \quad(I J) K=I(J K), \\
(I+J) K=I K+J K, \quad I(J+K)=I J+I K .
\end{gathered}
$$

Explain why the set of ideals of a ring R is not itself a unital commutative ring with respect to these operations of addition and multiplication.
(b) Let I and J be ideals of R satisfying $I+J=R$. Show that $(I+J)^{n} \subset I+J^{n}$ for all natural numbers n and hence prove that $I+J^{n}=R$ for all n. Thus show that $I^{m}+J^{n}=R$ for all natural numbers m and n. (The ideal J^{n} is by definition the set of all elements of R that can be expressed as a finite sum of elements of R of the form $a_{1} a_{2} \cdots a_{n}$ with $a_{i} \in J$ for $i=1,2, \ldots, n$.)
(c) Let I and J be ideals of R satisfying $I+J=R$. By considering the ideal $(I \cap J)(I+J)$, or otherwise, show that $I J=I \cap J$.
3. Let R be a unital commutative ring, and let M and N be R-modules. Show that the set $\operatorname{Hom}_{R}(M, N)$ of all R-module homomorphisms from M to N is itself an R-module (where the algebraic operations on $\operatorname{Hom}(M, N)$ are defined in an obvious natural way).
4. (a) Show that the cubic curve $\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3}(\mathbb{R}): t \in \mathbb{R}\right\}$ is an algebraic set.
(b) Show that the cone $\left\{(s \cos t, s \sin t, s) \in \mathbb{A}^{3}(\mathbb{R}): s, t \in \mathbb{R}\right\}$ is an algebraic set.
(c) Show that the unit sphere $\left\{(z, w) \in \mathbb{A}^{2}(\mathbb{C}):|z|^{2}+|w|^{2}=1\right\}$ in $\mathbb{A}^{2}(\mathbb{C})$ is not an algebraic set.
(d) Show that the curve $\left\{(t \cos t, t \sin t, t) \in \mathbb{A}^{3}(\mathbb{R}): t \in \mathbb{R}\right\}$ is not an algebraic set.
5. Let K be a field, and let \mathbb{A}^{n} denote n-dimensional affine space over the field K.
Let V and W be algebraic sets in \mathbb{A}^{m} and \mathbb{A}^{n} respectively. Show that the Cartesian product $V \times W$ of V and W is an algebraic set in \mathbb{A}^{m+n}, where

$$
\begin{aligned}
V \times W= & \left\{\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{A}^{m+n}:\right. \\
& \left.\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in V \text { and }\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in W\right\} .
\end{aligned}
$$

6. Give an example of a proper ideal I in $\mathbb{R}[X]$ with the property that $V[I]=\emptyset$. [Hint: consider quadratic polynomials in X.]
7. Let I be the ideal of the polynomial ring $\mathbb{R}[X, Y, Z]$ generated by the polynomials $X Y, Y Z$ and $X Y$. Determine the corresponding algebraic set $V(I)$.
8. Let R be an integral domain, and let F be a free module of rank n over R (where n is some positive integer). Let $\operatorname{Hom}_{R}(F, R)$ be the R module consisting of all R-module homorphisms from F to R. Prove that $\operatorname{Hom}_{R}(F, R)$ is itself a free module of rank n.
