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6 Finitely-Generated Modules over

Principal Ideal Domains

6.1 Linear Independence and Free Modules

Let M be a module over a unital commutative ring R, and let x1, x2, . . . , xk
be elements of M . A linear combination of the elements x1, x2, . . . , xk with
coefficients r1, r2, . . . , rk is an element of M that is represented by means of
an expression of the form

r1x1 + r2x2 + · · ·+ rkxk,

where r1, r2, . . . , rk are elements of the ring R.

Definition Let M be a module over a unital commutative ring R. The
elements of a subset X of M are said to be linearly dependent if there exist
distinct elements x1, x2, . . . , xk of X (where xi 6= xj for i 6= j) and elements
r1, r2, . . . , rk of the ring R, not all zero, such that

r1x1 + r2x2 + · · ·+ rkxk = 0M ,

where 0M denotes the zero element of the module M .
The elements of a subset X of M are said to be linearly independent over

the ring R if they are not linearly dependent over R.

Let M be a module over a unital commutative ring R, and let X be a
(finite or infinite) subset of M . The set X generates M as an R-module if and
only if, given any non-zero element m of M , there exist x1, x2, . . . , xk ∈ X
and r1, r2, . . . , rk ∈ R such that

m = r1x1 + r2x2 + · · ·+ rkxk

(see Lemma 3.1). In particular, a moduleM over a unital commutative ringR
is generated by a finite set {x1, x2, . . . , xk} if and only if any element of M
can be represented as a linear combination of x1, x2, . . . , xk with coefficients
in the ring R.

A module over a unital commutative ring is freely generated by the empty
set if and only if it is the zero module.

Definition Let M be a module over a unital commutative ring R, and let
X be a subset of M . The module M is said to be freely generated by the
set X if the following conditions are satisfied:
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(i) the elements of X are linearly independent over the ring R;

(ii) the module M is generated by the subset X.

Definition A module over a unital commutative ring is said to be free if
there exists some subset of the module which freely generates the module.

Definition Let M be a module over a unital commutative ring R. Elements
x1, x2, . . . , xk ofM are said to constitute a free basis ofM if these elements are
distinct, and if the R-moduleM is freely generated by the set {x1, x2, . . . , xk}.

Lemma 6.1 Let M be a module over an unital commutative ring R. Ele-
ments x1, x2, . . . , xk of M constitute a free basis of that module if and only
if, given any element m of M , there exist uniquely determined elements
r1, r2, . . . , rk of the ring R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

Proof First suppose that x1, x2, . . . , xk is a list of elements of M with the
property that, given any element m of M , there exist uniquely determined
elements r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

Then the elements x1, x2, . . . , xk generate M . Also the uniqueness of the
coefficients r1, r2, . . . , rk ensures that the zero element 0M of M cannot be
expressed as a linear combination of x1, x2, . . . , xk unless the coeffients in-
volved are all zero. Therefore these elements are linearly independent and
thus constitute a free basis of the module M .

Conversely suppose that x1, x2, . . . , xk is a free basis of M . Then any ele-
ment of M can be expressed as a linear combination of the free basis vectors.
We must prove that the coefficients involved are uniquely determined. Let
r1, r2, . . . , rk and s1, s2, . . . , sk be elements of the coefficient ring R satisfying

r1x1 + r2x2 + · · ·+ rkxk = s1x1 + s2x2 + · · ·+ skxk.

Then
(r1 − s1)x1 + (r2 − s2)x2 + · · ·+ (rk − sk)xk = 0M .

But then rj−sj = 0 and thus rj = sj for j = 1, 2, . . . , n, since the elements of
any free basis are required to be linearly independent. This proves that any
element of M can be represented in a unique fashion as a linear combination
of the elements of a free basis of M , as required.
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Proposition 6.2 Let M be a free module over a unital commutative ring R,
and let X be a subset of M that freely generates M . Then, given any R-
module N , and given any function f :X → N from X to N , there exists a
unique R-module homomorphism ϕ:M → N such that ϕ|X = f .

Proof We first prove the result in the special case where M is freely gen-
erated by a finite set X. Thus suppose that X = {x1, x2, . . . , xk}, where
the elements x1, x2, . . . , xk are distinct. Then these elements are linearly
independent over R and therefore, given any element m of M , there exist
uniquely-determined elements r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.

(see Lemma 6.1). It follows that, given any R-module N , and given any
function f :X → N from X to N , there exists a function ϕ:M → N from M
to N which is characterized by the property that

ϕ(r1x1 + r2x2 + · · ·+ rkxk) = r1f(x1) + r2f(x2) + · · ·+ rkf(xk).

for all r1, r2, . . . , rk. It is an easy exercise to verify that this function is an R-
module homomorphism, and that it is the unique R-module homomorphism
from M to N that extends f :X → N .

Now consider the case whenM is freely generated by an infinite setX. Let
N be an R-module, and let f :X → N be a function from X to N . For each
finite subset Y of X, let MY denote the submodule of M that is generated
by Y . Then the result we have just proved for modules freely generated
by finite sets ensures that there exists a unique R-module homomorphism
ϕY :MY → N from MY to N such that ϕY (y) = f(y) for all y ∈ Y .

Let Y and Z be finite subsets ofX, where Y ∩Z 6= ∅. Then the restrictions
of the R-module homomorphisms ϕY :MY → N and ϕZ :MZ → N to MY ∩Z
are R-module homomorphisms fromMY ∩Z toN that extend f |Y ∩Z:Y ∩Z →
N . But we have shown that any extension of this function to an R-module
homomorphism from MY ∩Z → N is uniquely-determined. Therefore

ϕY |MY ∩Z = ϕZ |MY ∩Z = ϕY ∩Z .

Next we show that MY ∩MZ = MY ∩Z . Clearly MY ∩Z ⊂ MY and MY ∩Z ⊂
MZ . Let Y ∪ Z = {x1, x2, . . . , xk}, where x1, x2, . . . , xk are distinct. Then,
given any element m of MY ∩MZ , there exist uniquely-determined elements
r1, r2, . . . , rk of R such that

m = r1x1 + r2x2 + · · ·+ rkxk.
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But this element m is expressible as a linear combination of elements of
Y alone, and as a linear combination of elements of Z alone. Therefore,
for each index i between 1 and k, the corresponding coefficient ri is zero
unless both xi ∈ Y and xi ∈ Z. But this ensures that x is expressible as
a linear combination of elements that belong to Y ∩ Z. This verifies that
MY ∩MZ = MY ∩Z .

Let m ∈ M . Then m can be represented as a linear combination of the
elements of some finite subset Y of X with coefficients in the ring R. But
then m ∈ MY . It follows that M is the union of the submodules MY as Y
ranges over all finite subsets of the generating set X.

Now there is a well-defined function ϕ:M → N characterized by the
property that ϕ(m) = ϕY (m) whenever m belongs to MY for some finite
subset Y of X. Indeed suppose that some element m of M belongs to both
MY and MZ , where Y and Z are finite subsets of M . Then m ∈MY ∩Z , since
we have shown that MY ∩MZ = MY ∩Z . But then ϕY (m) = ϕY ∩Z(m) =
ϕZ(m). This result ensures that the homomorphisms ϕ:MY → N defined on
the submodules MY of M generated by finite subsets Y of X can be pieced
together to yield the required function ϕ:M → N . Moreover, given elements
x and y of M , there exists some finite subset Y of M such that x ∈MY and
y ∈MY . Then

ϕ(x+ y) = ϕY (x+ y) = ϕY (x) + ϕY (y) = ϕ(x) + ϕ(y),

and
ϕ(rx) = ϕY (rx) = rϕY (x) = rϕ(x)

for all r ∈ R. Thus the function ϕ:M → N is an R-module homomor-
phism. The uniqueness of the R-module homomorphisms ϕY then ensures
that ϕ:M → N is the unique R-module homomorphism from M to N that
extends f :X → N , as required.

Proposition 6.3 Let R be a unital commutative ring, let M and N be R-
modules, let F be a free R-module, let π:M → N be a surjective R-module
homomorphism, and let ϕ:F → N be an R-module homomorphism. Then
there exists an R-module homomorphism ψ:F →M such that ϕ = π ◦ ψ.

Proof Let X be a subset of the free module F that freely generates F . Now,
because the R-module homomorphism π:M → N is surjective, there exists
a function f :X → M such that π(f(x)) = ϕ(x) for all x ∈ X. It then
follows from Proposition 6.2 that there exists an R-module homomorphism
ψ:F →M such that ψ(x) = f(x) for all x ∈ X. Then π(ψ(x)) = π(f(x)) =
ϕ(x) for all x ∈ X. But it also follows from Proposition 6.2 that any R-
module homomorphism from F to N that extends ϕ|X:X → N is uniquely
determined. Therefore π ◦ ψ = ϕ, as required.
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Proposition 6.4 Let R be a unital commutative ring, let M be an R-module,
let F be a free R-module and let π:M → F be a surjective R-module homo-
morphism. Then M ∼= kerπ ⊕ F .

Proof It follows from Proposition 6.3 (applied to the identity automorphism
of F ) that there exists an R-module homomorphism ψ:F → M with the
property that π(ψ(f)) = f for all f ∈ F . Let θ: ker π ⊕ F → M be defined
so that θ(k, f) = k + ψ(f) for all f ∈ F . Then θ: ker π ⊕ F → M is an
R-module homomorphism. Now

π(m− ψ(π(m))) = π(m)− (π ◦ ψ)(π(m)) = π(m)− π(m) = 0F ,

where 0F denotes the zero element of F . Therefore m − ψ(π(m)) ∈ kerπ
for all m ∈ M . But then m = θ(m − ψ(π(m)), π(m)) for all m ∈ M . Thus
θ: ker π ⊕ F →M is surjective.

Now let (k, f) ∈ ker θ, where k ∈ kerπ and f ∈ F . Then ψ(f) = −k. But
then f = π(ψ(f)) = −π(k) = 0F . Also k = ψ(0F ) = 0M , where 0M denotes
the zero element of the module M . Therefore the homomorphism θ: ker π ⊕
F → M has trivial kernel and is therefore injective. This homomorphism
is also surjective. It is therefore an isomorphism between kerπ ⊕ F and M .
The result follows.

6.2 Free Modules over Integral Domains

Definition A module M over an integral domain R is said to be a free
module of finite rank if there exist elements b1, b2, . . . , bk ∈M that constitute
a free basis for M . These elements constitute a free basis if and only if, given
any element m of M , there exist uniquely-determined elements r1, r2, . . . , rk
of R such that

m = r1b1 + r2b2 + · · ·+ rkbk.

Proposition 6.5 Let M be a free module of finite rank over an integral do-
main R, let b1, b2, . . . , bk be a free basis for M , and let m1,m2, . . . ,mp be
elements of M . Suppose that p > k, where k is the number elements con-
stituting the free basis of m. Then the elements m1,m2, . . . ,mp are linearly
dependent over R.

Proof We prove the result by induction on the number k of elements in the
free basis. Suppose that k = 1, and that p > 1. If either of the elements
m1 or m2 is the zero element 0M then m1,m2, . . . ,mp are certainly linearly
dependent. Suppose therefore that m1 6= 0M and m2 6= 0M . Then there exist
non-zero elements s1 and s2 of the ring R such that m1 = s1b1, and m2 = s2b1,
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because {b1} generates the moduleM . But then s2m1−s1m2 = 0M . It follows
that the elements m1 and m2 are linearly dependent over R. This completes
the proof in the case when k = 1.

Suppose now that M has a free basis with k elements, where k > 1, and
that the result is true in all free modules that have a free basis with fewer
than k elements. Let b1, b2, . . . , bk be a free basis for M . Let ν:M → R be
defined such that

ν(r1b1 + r2b2 + · · ·+ rkbk) = r1.

Then ν:M → R is a well-defined homomorphism of R-modules, and ker ν
is a free R-module with free basis b2, b3, . . . , bk. The induction hypothesis
therefore guarantees that any subset of ker ν with more than k − 1 elements
is linearly dependent over R.

Let m1,m2, . . . ,mp be a subset of M with p elements, where p > k. If
ν(mj) = 0R for j = 1, 2, . . . , p, where 0R denotes the zero element of the
integral domain R, then this set is a subset of ker ν, and is therefore linearly
dependent. Otherwise ν(mj) 6= 0R for at least one value of j between 1 and
p. We may assume without loss of generality that ν(m1) 6= 0R. Let

m′j = ν(m1)mj − ν(mj)m1 for j = 2, 3, . . . , p.

Then ν(m′j) = 0, and thus m′j ∈ ker ν for j = 2, 3, . . . , p. It follows from the
induction hypothesis that the elements m′2,m

′
3, . . . ,m

′
p of ker ν are linearly

dependent. Thus there exist elements r2, r3, . . . , rp of R, not all zero, such
that

p∑
j=2

rjm
′
j = 0M .

But then

−

(
p∑

j=2

rjν(mj)

)
m1 +

p∑
j=2

rjν(m1)mj = 0M .

Now ν(m1) 6= 0R. Also rj 6= 0R for at least one value of j between 2 and
p, and any product of non-zero elements of the integral domain R is a non-
zero element of R. It follows that rjν(m1) 6= 0R for at least one value of j
between 2 and p. We conclude therefore that the elements m1,m2, . . . ,mp are
linearly dependent (since we have expressed the zero element of M above as a
linear combination of m1,m2, . . . ,mp whose coefficients are not all zero). The
required result therefore follows by induction on the number k of elements
in the free basis of M .

Corollary 6.6 Let M be a free module of finite rank over an integral do-
main R. Then any two free bases of M have the same number of elements.
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Proof Suppose that b1, b2, . . . , bk is a free basis of M . The elements of any
other free basis are linearly independent. It therefore follows from Proposi-
tion 6.5 that no free basis of M can have more than k elements. Thus the
number of elements constituting one free basis of M cannot exceed the num-
ber of elements constituting any other free basis of M . The result follows.

Definition The rank of a free module is the number of elements in any free
basis for the free module.

Corollary 6.7 Let M be a module over an integral domain R. Suppose
that M is generated by some finite subset of M that has k elements. If some
other subset of M has more than k elements, then those elements are linearly
dependent.

Proof Suppose that M is generated by the set g1, g2, . . . , gk. Let θ:Rk →M
be the R-module homomorphism defined such that

θ(r1, r2, . . . , rk) =
k∑

j=1

rjgj

for all (r1, r2, . . . , rk) ∈ Rk. Then the R-module homomorphism θ:Rk → M
is surjective.

Let m1,m2, . . . ,mp be elements of M , where p > k. Then there exist
elements t1, t2, . . . , tp of Rk such that θ(tj) = mj for j = 1, 2, . . . , p. Now
Rk is a free module of rank k. It follows from Proposition 6.5 that the
elements t1, t2, . . . , tp are linearly dependent. Therefore there exist elements
r1, r2, . . . , rp of R, not all zero, such that

r1t1 + r2t2 + · · ·+ rptp

is the zero element of Rk. But then

r1m1 + r2m2 + · · ·+ rpmp = θ(r1t1 + r2t2 + · · ·+ rptp) = 0M ,

where 0M denotes the zero element of the module M . Thus the elements
m1,m2, . . . ,mp are linearly dependent. The result follows.

6.3 Torsion Modules

Definition A module M over an integral domain R is said to be a torsion
module if, given any element m of M , there exists some non-zero element r
of R such that rm = 0M , where 0M is the zero element of M .
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Lemma 6.8 Let M be a finitely-generated torsion module over an integral
domain R. Then there exists some non-zero element t of R with the property
that tm = 0M for all m ∈M , where 0M denotes the zero element of M .

Proof Let M be generated as an R-module by m1,m2, . . . ,mk. Then there
exist non-zero elements r1, r2, . . . , rk of R such that rimi = 0M for i =
1, 2, . . . , k. Let t = r1r2 · · · rk. Now the product of any finite number of
non-zero elements of an integral domain is non-zero. Therefore t 6= 0. Also
tmi = 0M for i = 1, 2, . . . , k, because ri divides t. Let m ∈M . Then

m = s1m1 + s2m2 + · · ·+ skmk

for some s1, s2, . . . , sk ∈ R. Then

tm = t(s1m1 + s2m2 + · · ·+ skmk)

= s1(tm1) + s2(tm2) + · · ·+ sk(tmk) = 0M ,

as required.

6.4 Free Modules of Finite Rank over Principal Ideal
Domains

Proposition 6.9 Let M be a free module of rank n over a principal ideal
domain R. Then every submodule of M is a free module of rank at most n
over R.

Proof We prove the result by induction on the rank of the free module.
Let M be a free module of rank 1. Then there exists some element b of

M that by itself constitutes a free basis of M . Then, given any element m
of M , there exists a uniquely-determined element r of R such that m = rb.
Given any non-zero submodule N of M , let

I = {r ∈ R : rb ∈ N}.

Then I is an ideal of R, and therefore there exists some element s of R such
that I = (s). Then, given n ∈ N , there is a uniquely determined element r
of R such that n = rsb. Thus N is freely generated by sb. The result is
therefore true when the module M is free of rank 1.

Suppose that the result is true for all modules over R that are free of
rank less than k. We prove that the result holds for free modules of rank k.
Let M be a free module of rank k over R. Then there exists a free basis
b1, b2, . . . , bk for M . Let ν:M → R be defined such that

ν(r1b1 + r2b2 + · · ·+ rkbk) = r1.
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Then ν:M → R is a well-defined homomorphism of R-modules, and ker ν is
a free R-module of rank k − 1.

Let N be a submodule of M . If N ⊂ ker ν the result follows immediately
from the induction hypothesis. Otherwise ν(N) is a non-zero submodule of
a free R-module of rank 1, and therefore there exists some element n1 ∈ N
such that ν(N) = {rν(n1) : r ∈ R}. Now N ∩ ker ν is a submodule of a free
module of rank k− 1, and therefore it follows from the induction hypothesis
that there exist elements n2, . . . , np of N ∩ ker ν that constitute a free basis
for N ∩ker ν. Moreover p ≤ k, because the induction hypothesis ensures that
the rank of N ∩ ker ν is at most k − 1

Let n ∈ N . Then there is a uniquely-determined element r1 of R such
that ν(n) = r1ν(n1). Then n − r1n1 ∈ N ∩ ker ν, and therefore there exist
uniquely-determined elements r2, . . . , rp of R such that

n− r1n1 = r2n2 + · · · rpnp.

It follows directly from this that n1, n2, . . . , np freely generate N . Thus N is
a free R-module of finite rank, and

rankN = p ≤ k = rankM.

The result therefore follows by induction on the rank of M .

6.5 Torsion-Free Modules

Definition A module M over an integral domain R is said to be torsion-
free if rm is non-zero for all non-zero elements r of R and for all non-zero
elements m of M .

Proposition 6.10 Let M be a finitely-generated torsion-free module over a
principal ideal domain R. Then M is a free module of finite rank over R.

Proof It follows from Corollary 6.7 that if M is generated by a finite set with
k elements, then no linearly independent subset of M can have more than k
elements. Therefore there exists a linearly independent subset of M which
has at least as many elements as any other linearly independent subset of
M . Let the elements of this subset be b1, b2, . . . , bp, where bi 6= bj whenever
i 6= j, and let F be the submodule of M generated by b1, b2, . . . , bp. The
linear independence of b1, b2, . . . , bp ensures that every element of F may be
represented uniquely as a linear combination of b1, b2, . . . , bp. It follows that
F is a free module over R with basis b1, b2, . . . , bp.

Let m ∈ M . The choice of b1, b2, . . . , bp so as to maximize the number
of members in a list of linearly-independent elements of M ensures that
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the elements b1, b2, . . . , bp,m are linearly dependent. Therefore there exist
elements s1, s2, . . . , sp and r of R, not all zero, such that

s1b1 + s2b2 + · · ·+ spbp − rm = 0M

(where 0M denotes the zero element of M). If it were the case that r = 0R,
where 0R denotes the zero element of R, then the elements b1, b2, . . . , bp would
be linearly dependent. The fact that these elements are chosen to be linearly
independent therefore ensures that r 6= 0R. It follows from this that, given
any element m of M , there exists a non-zero element r of R such that rm ∈ F .
Then r(m+F ) = F in the quotient module M/F . We have thus shown that
the quotient module M/F is a torsion module. It is also finitely generated,
since M is finitely generated. It follows from Lemma 6.8 that there exists
some non-zero element t of the integral domain R such that t(m + F ) = F
for all m ∈M . Then tm ∈ F for all m ∈M .

Let ϕ:M → F be the function defined such that ϕ(m) = tm for all
m ∈ M . Then ϕ is a homomorphism of R-modules, and its image is a
submodule of F . Now the requirement that the module M be torsion-free
ensures that tm 6= 0M whenever m 6= 0M . Therefore ϕ:M → F is injective.
It follows that ϕ(M) ∼= M . Now R is a principal ideal domain, and any
submodule of a free module of finite rank over a principal ideal domain is
itself a free module of finite rank (Proposition 6.9). Therefore ϕ(M) is a free
module. But this free module is isomorphic to M . Therefore the finitely-
generated torsion-free module M must itself be a free module of finite rank,
as required.

Lemma 6.11 Let M be a module over an integral domain R, and let

T = {m ∈M : rm = 0M for some non-zero element r of R},

where 0M denotes the zero element of M . Then T is a submodule of M .

Proof Let m1,m2 ∈ T . Then there exist non-zero elements s1 and s2 of R
such that s1m1 = 0M and s2m2 = 0M . Let s = s1s2. The requirement that
the coefficient ring R be an integral domain then ensures that s is a non-zero
element of R. Also sm1 = 0M , sm2 = 0M , and s(rm1) = r(sm1) = 0M for
all r ∈ R. Thus m1 + m2 ∈ T and rm1 ∈ T for all r ∈ R. It follows that T
is a submodule of R, as required.

Definition Let M be a module over an integral domain R. The torsion
submodule of M is the submodule T of M defined such that

T = {m ∈M : rm = 0M for some non-zero element r of R},
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where 0M denotes the zero element of M . Thus an element m of M belongs
to the torsion submodule T of M if and only if there exists some non-zero
element r of R for which rm = 0M .

Proposition 6.12 Let M be a finitely-generated module over a principal
ideal domain R. Then there exists a torsion module T over R and a free
module F of finite rank over R such that M ∼= T ⊕ F .

Proof Let T be the torsion submodule ofM . We first prove that the quotient
module M/T is torsion-free.

Let m ∈ M , and let r be a non-zero element of the ring R. Suppose
that rm ∈ T . Then there exists some non-zero element s of R such that
s(rm) = 0M . But then (sr)m = 0M and sr 6= 0R (because R is an integral
domain), and therefore m ∈ T . It follows that if m ∈M , r 6= 0R and m 6∈ T
then rm 6∈ T . Thus if m + T is a non-zero element of the quotient module
M/T then so is rm + T for all non-zero elements r of the ring R. We have
thus shown that the quotient module M/T is a torsion-free module over R.

It now follows from Proposition 6.10 that M/T is a free module of finite
rank over the principal ideal domain R. Let F = M/T , and let ν:M → F
be the quotient homomorphism defined such that ν(m) = m + T for all
m ∈ M . Then ker ν = T . It follows immediately from Proposition 6.4 that
M ∼= T ⊕ F . The result follows.

6.6 Finitely-Generated Torsion Modules over Princi-
pal Ideal Domains

Let M be a finitely-generated torsion module over an integral domain R.
Then there exists some non-zero element t of R with the property that tm =
0M for all m ∈M , where 0M denotes the zero element of M (Lemma 6.8).

Proposition 6.13 Let M be a finitely-generated torsion module over a prin-
cipal ideal domain R, and let t be a non-zero element of R with the property
that tm = 0M for all m ∈ M . Let t = pk11 p

k2
2 · · · pkss , where k1, k2, . . . , ks are

positive integers and p1, p2, . . . , ps are prime elements of R that are pairwise
coprime (so that pi and pj are coprime whenever i 6= j). Then there exist
unique submodules M1,M2, . . . ,Ms of M such that the following conditions
are satisfied:—

(i) the submodule Mi is finitely generated for i = 1, 2, . . . , s;

(ii) M = M1 ⊕M2 ⊕ · · · ⊕Ms;
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(iii) Mi = {m ∈M : pkii m = 0M} for i = 1, 2, . . . , s.

Proof The result is immediate if s = 1. Suppose that s > 1. Let vi =∏
j 6=i

p
kj
j for i = 1, 2, . . . , s (so that vi is the product of the factors p

kj
j of t

for j 6= i). Then, for each integer i between 1 and s, the elements pi and
vi of R are coprime, and t = vip

ki
i . Moreover any prime element of R that

is a common divisor of v1, v2, . . . , vs must be an associate of one the prime
elements p1, p2, . . . , . . . , ps of R. But pi does not divide vi for i = 1, 2, . . . , s.
It follows that no prime element of R is a common divisor of v1, v2, . . . , vs,
and therefore any common divisor of these elements of R must be a unit of R
(i.e., the elements v1, v2, . . . , vs of R are coprime). It follows from Lemma 2.7
that there exist elements w1, w2, . . . , ws of R such that

v1w1 + v2w2 + · · ·+ vsws = 1R,

where 1R denotes the multiplicative identity element of R.
Let qi = viwi for i = 1, 2, . . . , s. Then q1+q2+ · · ·+qs = 1R, and therefore

m =
s∑

i=1

qim

for all m ∈ M . Now t is the product of the elements pkii for i = 1, 2, . . . , s.

Also p
kj
j divides vi and therefore divides qi whenever j 6= i. It follows that

t divides pkii qi for i = 1, 2, . . . , s, and therefore pkii qim = 0M for all m ∈ M .
Thus qim ∈Mi for i = 1, 2, . . . , s, where

Mi = {m ∈M : pkii m = 0M .}

It follows that the homomorphism

ϕ:M1 ⊕M2 ⊕ · · · ⊕Ms →M

from M1 ⊕M2 ⊕ · · · ⊕Ms to M that sends (m1,m2, . . . ,ms) to m1 + m2 +
· · · + ms is surjective. Let (m1,m2, . . . ,ms) ∈ kerϕ. Then pkii mi = 0 for
i = 1, 2, . . . , s, and

m1 +m2 + · · ·+ms = 0M

Now vimj = 0 when i 6= j because p
kj
j divides vi. It follows that qimj = 0

whenever i 6= j, and therefore

mj = q1mj + q2mj + · · ·+ qsmj = qjmj
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for j = 1, 2, . . . , s. But then

0M = qi(m1 +m2 + · · ·+ms) = qimi = mi.

Thus kerϕ = {(0M , 0M , . . . , 0M)}. We conclude that the homomorphism

ϕ:M1 ⊕M2 ⊕ · · · ⊕Ms →M

is thus both injective and surjective, and is thus an isomorphism.
Moreover Mi is finitely generated for i = 1, 2, . . . , s. Indeed Mi = {qim :

m ∈ M}. Thus if the elements f1, f2, . . . , fn generate M then the elements
qif1, qif2, . . . , qifn generate Mi. The result follows.

Proposition 6.14 Let M be a finitely-generated torsion module over a prin-
cipal ideal domain R, let p be a prime element of R, and let k be a positive
integer. Suppose that pkm = 0M for all m ∈ M . Then there exist elements
b1, b2, . . . , bs of M and positive integers k1, k2, . . . , ks, where 1 ≤ ki ≤ k for
i = 1, 2, . . . , s, such that the following conditions are satisfied:

(i) every element of M can be expressed in the form

r1b1 + r2b2 + · · ·+ rsbs

for some elements r1, r2, . . . , rs ∈ R;

(ii) elements r1, r2, . . . , rs of R satisfy

r1b1 + r2b2 + · · ·+ rsbs = 0M

if and only if pki divides ri for i = 1, 2, . . . , s.

Proof We prove the result by induction on the number of generators of the
finitely-generated torsion module M . Suppose that M is generated by a
single element g1. Then every element of M can be represented in the form
r1g1 for some r1 ∈ R. Let ϕ:R → M be defined such that ϕ(r) = rg1 for
all r ∈ R. Then ϕ is a surjective R-module homomorphism, and therefore
M ∼= R/ kerϕ. Now pk ∈ kerϕ, because pkm = 0M . Moreover R is a
principal ideal domain, and therefore kerϕ is the ideal tR generated by some
element t of R. Now t divides pk. It follows from the unique factorization
property possessed by principal ideal domains (Proposition 2.21) that t is
an associate of pk1 for some integer k1 satisfying 1 ≤ k1 ≤ k. But then
r1g1 = 0M if and only if pk1 divides r1. The proposition therefore holds when
the torsion module M is generated by a single generator.
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Now suppose that the stated result is true for all torsion modules over the
principal ideal domain R that are generated by fewer than n generators. Let
g1, g2, . . . , gn be generators of the module M , and let p be a prime element of
R, and suppose that there exists some positive integer k with the property
that pkm = 0M for all m ∈M . Let k be the smallest positive integer with this
property. Now if h is a positive integer with the property that phgi = 0M for
i = 1, 2, . . . , n then phm = 0M for all m ∈M , and therefore h ≥ k. It follows
that there exists some integer i between 1 and n such that pk−1gi 6= 0M .
Without loss of generality, we may assume that the generators have been
ordered so that pk−1g1 6= 0M . Let b1 = g1 and k1 = k. Then an element r of
R satisfies rb1 = 0M if and only if pk divides r.

Let L be the submodule of M generated by b1. Then the quotient module
M/L is generated by L+ g2, L+ g3, . . . , L+ gn. It follows from the induction
hypothesis that the proposition is true for the quotient module M/L, and
therefore there exist elements b̂2, b̂3, . . . , b̂s of M/L such that generate M/L
and positive integers k2, k3, . . . , ks such that

r2b̂2 + r3b̂3 + · · ·+ rsb̂s = 0M/L

if and only if pki divides ri for i = 2, 3, . . . , s. Let m2,m3, . . . ,ms be elements
of M chosen such that mi + L = b̂i for i = 2, 3, . . . , s. Then pkimi ∈ L for
i = 1, 2, . . . , s, and therefore pkimi = tib1 for some element ti of R, where
ki ≤ k. Moreover

0M = pkmi = pk−kipkimi = pk−kitib1,

and therefore pk divides pk−kiti in R. It follows that pki divides ti in R for
i = 2, 3, . . . , s. Let v2, v3, . . . , vs ∈ R be chosen such that ti = pkivi for
i = 2, 3, . . . , s, and let bi = mi − vib1. Then pkibi = pkimi − tib1 = 0M and
bi + L = b̂i for i = 2, 3, . . . , s.

Now, given m ∈M , there exist elements r2, r3, . . . , rs ∈ R such that

m+ L = r2b̂2 + r3b̂3 + · · ·+ rsb̂s = r2b2 + r3b3 + · · ·+ rsbs + L.

Then
r2b2 + r3b3 + · · ·+ rsbs −m ∈ L

and therefore there exists r1 ∈ R such that

r2b2 + r3b3 + · · ·+ rsbs −m = −r1b1,

and thus
m = r1b1 + r2b2 + r3b3 + · · ·+ rsbs.
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This shows that the elements b1, b2, . . . , bs of M generate the R-module M .
Now suppose that r1, r2, . . . , rs are elements of R with the property that

r1b1 + r2b2 + r3b3 + · · ·+ rsbs = 0M .

Then
r2b̂2 + r3b̂3 + · · ·+ rsb̂s = 0M/L,

because b1 ∈ L and bi + L = b̂i when i > 1, and therefore pki divides ri for
i = 2, 3, . . . , s. But then ribi = 0M for i = 2, 3, . . . , s, and thus r1b1 = 0M .
But then pk1 divides r1. The result follows.

Corollary 6.15 Let M be a finitely-generated torsion module over a prin-
cipal ideal domain R, let p be a prime element of R, and let k be a positive
integer. Suppose that pkm = 0M for all m ∈M . Then there exist submodules
L1, L2, . . . , Ls of M and positive integers k1, k2, . . . , ks, where 1 ≤ ki ≤ ks for
i = 1, 2, . . . , s, such that

M = L1 ⊕ L2 ⊕ · · · ⊕ Ls

and
Li
∼= R/pkiR

for i = 1, 2, . . . , s, where pkiR denotes the ideal of R generated by pki.

Proof Let b1, b2, . . . , bs and k1, k2, . . . , ks have the properties listed in the
statement of Proposition 6.14. Then each bi generates a submodule Li of
M that is isomorphic to R/pkiR. Moreover M is the direct sum of these
submodules, as required.

6.7 Cyclic Modules and Order Ideals

Definition A module M over a unital commutative ring R is said to be
cyclic if there exists some element b of M that generates M .

Let M be a cyclic module over a unital commutative ring R, and let b be
a generator of M . Let ϕ:R → M be the R-module homomorphism defined
such that ϕ(r) = rb for all r ∈ R. Then kerϕ is an ideal of R. Moreover if
s ∈ kerϕ then srb = rsb = 0M for all r ∈ R, and therefore sm = 0M for all
m ∈M . Thus

kerϕ = {r ∈ R : rm = 0 for all m ∈M}.
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Definition Let M be a cyclic module over a unital commutative ring R.
The order ideal o(M) is the ideal

o(M) = {r ∈ R : rm = 0 for all m ∈M}.

Lemma 6.16 Let M be a cyclic module over a unital commutative ring R,
and let o(M) the the order ideal of M . Then M ∼= R/o(M).

Proof Choose a generator b of M . The R-module homomorphism that sends
r ∈ R to rb is surjective, and its kernel is o(M). The result follows.

6.8 The Structure of Finitely-Generated Modules over
Principal Ideal Domains

Proposition 6.17 Let M be a finitely generated module over a principal
ideal domain R. Then M can be decomposed as a direct sum of cyclic mod-
ules.

Proof Let T be the torsion submodule of M . Then there exists a sub-
module F of M such that M = T ⊕ F and F is a free module of finite
rank (Proposition 6.12). Now F ∼= Rd, where d is the rank of F . Indeed if
b1, b2, . . . , bd is a free basis for F then the function sending (r1, r2, . . . , rd) to

r1b1 + r2b2 + · · ·+ rdbd

is an R-module isomorphism from the direct sum Rd of d copies of the ring R
to F . Moreover R is itself a cyclic R-module, since it is generated by its
multiplicative identity element 1R.

On applying Proposition 6.13 to the torsion module T , we conclude that
there exist positive integers k1, k2, . . . , ks, prime elements p1, p2, . . . , ps of R
that are pairwise coprime, and uniquely-determined finitely-generated sub-
modules such that Ti = {m ∈M : pkii m = 0M} for i = 1, 2, . . . , s and

T = T1 ⊕ T2 ⊕ · · · ⊕ Ts.

It then follows from Corollary 6.15 that each Ti can in turn be decomposed
as a direct sum of cyclic submodules. The result follows.

Let R, M , T and F , d, T1, T2, . . . , Ts, p1, p2, . . . , ps and k1, k2, . . . , ks be
defined as in the proof of Proposition 6.17. Then F ∼= M/T . Now any
two free bases of F have the same number of elements, and thus the rank
of F is well-defined (Corollary 6.6). Therefore d is uniquely-determined.
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Also the prime elements p1, p2, . . . , ps of R are uniquely-determined up to
multiplication by units, and the corresponding submodules T1, T2, . . . , Ts are
determined by p1, p2, . . . , ps.

However the splitting of the submodule Ti of M determined by pi into
cyclic submodules is in general not determined.

Lemma 6.18 Let R be a principal ideal domain and p is a prime element
of R. Then R/pR is a field.

Proof Let I be an ideal satisfying pR ⊂ I ⊂ R then there exists some
element s of R such that I = sR. But then s divides p, and p is prime, and
therefore either s is a unit, in which case I = R, or else s is an associate of p,
in which case I = pR. In other words the ideal pR is a maximal ideal of the
principal ideal domain R whenever p ∈ R is prime. But then the only ideals
of R/pR are the zero ideal and the quotient ring R/pR itself, and therefore
R/pR is a field, as required.

Lemma 6.19 Let R be a principal ideal domain, and let p be a prime element
of R. Then pjR/pj+1R ∼= R/pR for all positive integers j.

Proof Let θj:R → pjR/pj+1R be the R-module homomorphism that sends
r ∈ R to pjr + pj+1R for all r ∈ R. Then

ker θj = {r ∈ R : pjr ∈ pj+1R} = pR.

Indeed if r ∈ R satisfies pjr ∈ pj+1R then pjr = pj+1s for some s ∈ R. But
then pj(r − ps) = 0R and therefore r = ps, because R is an integral domain.
It follows that θh:R → pjR/pj+1R induces an isomorphism from R/pR to
pjR/pj+1R, and thus

R/pR ∼= pjR/pj+1R

for all positive integers j, as required.

Proposition 6.20 Let R be a principal ideal domain, let p be a prime el-
ement of R, and let L be a cyclic R-module, where L ∼= R/pkR for some
positive integer k. Then pjL/pj+1L ∼= R/pR when j < k, and pjL/pj+1L is
the zero module when j ≥ k.

Proof Suppose that j < k. Then

pjL/pj+1L ∼=
pjR/pkR

pj+1R/pkR
∼= pjR/pj+1R ∼= R/pR.
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Indeed the R-module homomorphism from R/pkR to pjR/pj+1R that sends
pjr+pkR to pjr+pj+1R is surjective, and its kernel is the subgroup pj+1R/pkR
of pjR/pkR. But pjR/pj+1R ∼= R/pR (Lemma 6.19). This completes the
proof when j < k. When j ≥ k then pjL and pj+1L are both equal to the
zero submodule of L and therefore their quotient is the zero module. The
result follows.

Let R be a principal ideal domain, let p be a prime element of R, and let
K = R/pR. Then K is a field (Lemma 6.18). Let M be an R-module. Then
pjM/pj+1M is a vector space over the field K for all non-negative integers j.
Indeed there is a well-defined multiplication operation K× (pjM/pj+1M)→
M/pj+1M defined such that (r + pR)(pjx + pj+1M) = pjrx + pj+1M for all
r ∈ R and x ∈ M , and this multiplication operation satisfies all the vector
space axioms.

Proposition 6.21 Let M be a finitely-generated module over a principal
ideal domain R. Suppose that pkM = {0M} for some prime element p of R.
Let k1, k2, . . . , ks be non-negative integers chosen such that

M = L1 ⊕ L2 ⊕ · · · ⊕ Ls

and
Li
∼= R/pkiR

for i = 1, 2, . . . , s. Let K be the vector space R/pR. Then, for each non-
negative integer j, the dimension dimK p

jM/pj+1M of pjM/pj+1M is equal
to the number of values of i satisfying 1 ≤ i ≤ s for which ki > j.

Proof Let L be a cyclic R-module, where L ∼= R/pkR for some positive
integer k. Then For each value of i between 1 and s, the quotient module
pjLi/p

j+1Li is a field over the vector space K. Now

pjM/pj+1M ∼= pjL1/p
j+1L1 ⊕ pjL2/p

j+1L2 ⊕ · · · ⊕ pjLs/p
j+1Ls,

and therefore

dimK p
jM/pj+1M =

s∑
i=1

dimK p
jLi/p

j+1Li.

It then follows from Proposition 6.20 that

dimK p
jLi/p

j+1Li =

{
1 if j < ki;
0 if j ≥ ki.

Therefore dimK p
jM/pj+1M is equal to the number of values of i between 1

and s for which ki > j, as required.
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Proposition 6.22 Let M be a finitely-generated module over a principal
ideal domain R. Suppose that pkM = {0M} for some prime element p of R.
Then the isomorphism class of M is determined by the sequence of values of
dimK p

jM/pj+1M , where 0 ≤ j < k.

Proof It follows from Corollary 6.15 that there exist non-negative integers
k1, k2, . . . , ks such that

M = L1 ⊕ L2 ⊕ · · · ⊕ Ls

and
Li
∼= R/pkiR

for i = 1, 2, . . . , s. Let K be the vector space R/pR. Suppose that the
exponents k1, k2, . . . , ks are ordered such that k1 ≤ k2 ≤ · · · ≤ ks. Then,
for each non-negative integer j, the dimension dimK p

jM/pj+1M is equal to
the number of values of i satisfying 1 ≤ i ≤ s for which ki > j. Therefore
s − dimK M/pM is equal to the number of values of i satisfying 1 ≤ i ≤ s
for which ki = 0, and, for j > 1, dimK p

jM/pj+1M − pj−1M/pjM is equal
to the number of values of i satisfying 1 ≤ i ≤ s for which ki = j. These
quantities determine k1, k2, . . . , ks, and therefore determine the isomorphism
class of M , as required.

Theorem 6.23 (Structure Theorem for Finitely-Generated Modules over a
Principal Ideal Domain) Let M be a finitely-generated module over a principal
ideal domain R. Then there exist prime elements p1, p2, . . . , ps of R and
uniquely-determined non-negative integers d and ki,1, ki,2, . . . , ki,mi

, where

ki,1 ≤ ki,2 ≤ · · · ≤ ki,mi
,

such that M is isomorphic to the direct sum of the free R-module Rd and the
cyclic modules R/p

ki,j
i R for i = 1, 2, . . . , s and j = 1, 2, . . . ,mi. The non-

negative integer d is uniquely determined, the prime elements p1, p2, . . . , ps
are deteremined subject to reordering and replacement by associates, and the
non-negative integers ki,1, ki,2, . . . , ki,mi

are uniquely determined, once pi has
been determined for i = 1, 2, . . . , s, subject to the requirement that

ki,1 ≤ ki,2 ≤ . . . ≤ ki,mi
.

Proof The existence of the integer d and the prime elements p1, p2, . . . , ps
and the non-negative integers ki,j follow from Proposition 6.17, Proposi-
tion 6.12, and Proposition 6.13. The uniqueness of d follows from the fact
that d is equal to the rank of M/T , where T is the torson submodule of M .
The uniqueness of ki,1, ki,2, . . . , ki,mi

for i = 1, 2, . . . , s, given p1, p2, . . . , ps
then follows on applying Proposition 6.22.
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6.9 The Jordan Normal Form

Let K be a field, and let V be a K[x]-module, where K[x] is the ring of
polynomials in the indeterminate x with coefficients in the field K. Let
T :V → V be the function defined such that Tv = xv for all v ∈ V . Then
the function T is a linear operator on V . Thus any K[x] module is a vector
space that is provided with some linear operator T that determines the effect
of multiplying elements of V by the polynomial x.

Now let T :V → V be a linear operator on a vector space V over some
field K. Given any polynomial f with coefficients in K, let f(x)v = f(T )v
for all v ∈ V , so that

(anx
n + an−1x

n−1 + · · ·+ a0)v = anT
nv + an−1T

n−1v + · · ·+ a0v

for all v ∈ V . Then this operation of multiplication of elements of V by
polynomials with coefficients in the field K gives V the structure of a module
over the ring K[x] of polynomials with coefficients in the field K.

Lemma 6.24 Let V be a finite-dimensional vector space over a field K. let
T :V → V be a linear operator on V , and let f(x)v = f(T )v for all poly-
nomials f(x) with coefficients in the field K. Then V is a finitely-generated
torsion module over the polynomial ring K[x].

Proof Let dimK V = n, and let e1, e2, . . . , en be a basis of V as a vector
space over K. Then e1, e2, . . . , en generate V as a vector space over K, and
therefore also generate V is a K[x]-module. Now, for each integer i between
1 and n, the elements

ei, T ei, T
2ei, . . . , T

nei

are linearly dependent, because the number of elements in this list exceeds
the dimension of the vector space V , and therefore there exist elements
ai,0, ai,1, . . . , ai,n of K such that

ai,nT
nei + ai,n−1T

n−1ei + · · ·+ ai,0ei = 0V ,

where 0V denotes the zero element of the vector space V . Let

fi(x) = ai,nx
n + ai,n−1x

n−1 + · · ·+ ai,0,

and let f(x) = f1(x) f2(x) · · · fn(x). Then fi(T )ei = 0 and thus f(T )ei = 0V

for i = 1, 2, . . . , n and for all v ∈ V . It follows that f(T )v = 0V for all v ∈ V .
Thus V is a torsion module over the polynomial ring K[x].
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A field K is said to be algebraically closed if every non-zero polynomial
has at least one root in the field K. A polynomial f(x) with coefficients in
an algebraically closed field K is irreducible if and only if f(x) = x − λ for
some λ ∈ K.

Proposition 6.25 Let V be a finite-dimensional vector space over an alge-
braically closed field K, and let T :V → V be a linear operator on V . Then
there exist elements λ1, λ2, . . . , λs of K, and non-negative integers

ki,1, ki,2, . . . , ki,mi
(1 ≤ i ≤ s)

elements
vi,1, vi,2, . . . , vi,mi

(1 ≤ i ≤ s)

of V , and vector subspaces

Vi,1, Vi,2, . . . , Vi,mi
(1 ≤ i ≤ s)

of V such that the following conditions are satisfied:—

(i) V is the direct some of the vector subspaces Vi,j for i = 1, 2, . . . , s and
j = 1, 2, . . . ,mi;

(ii) Vi,j = {f(T )vi,j : f(x) ∈ K[x]} for i = 1, 2, . . . , s and j = 1, 2, . . . ,mi;

(iii) the ideal {f(x) ∈ K[x] : f(T )vi,j = 0V } of the polynomial ring K[x]
is generated by the polynomial (x − λi)ki,j for i = 1, 2, . . . , s and j =
1, 2, . . . ,mi.

Proof This result follows directly from Theorem 6.23 and Lemma 6.24.

Let V be a finite-dimensional vector space over a field K, let T :V → V
be a linear transformation, let v be an element of V with the property that

V = {f(T )v : f ∈ K[x]},

let k be a positive integer, and let λ be an element of the field K with the
property that the ideal

{f(x) ∈ K[x] : f(T )v = 0V }

of the polynomial ring K[x] is generated by the polynomial (x − λ)k. Let
vj = (T − λ)jv for j = 0, 1, . . . , k − 1. Then V is a finite-dimensional vector
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space with basis v0, v1, . . . , vk−1 and Tvj = λvj +vj+1 for j = 0, 1, . . . , k. The
matrix of the linear operator V with respect to this basis then takes the form

λ 0 0 . . . 0 0
1 λ 0 . . . 0 0
0 1 λ . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λ 0
0 0 0 . . . 1 λ


.

It follows from Proposition 6.25 that, given any vector space V over an
algebraically closed field K, and given any linear operator T :V → V on
V , there exists a basis of V with respect to which the matrix of T is a
block diagonal matrix where the blocks are of the above form, and where
the values occurring on the leading diagonal are the eigenvalues of the linear
operator T . This result ensures in particular that any square matrix with
complex coefficients is similar to a matrix in Jordan normal form.
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