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6 Finitely-Generated Modules over
Principal Ideal Domains

6.1 Linear Independence and Free Modules

Let M be a module over a unital commutative ring R, and let xq, 2o, ..., 2
be elements of M. A linear combination of the elements x1, xs, ..., xp with
coefficients ri,ry, ..., 1) is an element of M that is represented by means of

an expression of the form
Ty 4 TeZo + -+ TETk,
where 71,75, ..., 1, are elements of the ring R.

Definition Let M be a module over a unital commutative ring R. The
elements of a subset X of M are said to be linearly dependent if there exist
distinct elements xy, xo, ...,z of X (where x; # x; for i # j) and elements
r1,79,...,7, of the ring R, not all zero, such that

r1m1+r2x2+--~+rkcck:0M,

where 0;; denotes the zero element of the module M.
The elements of a subset X of M are said to be linearly independent over
the ring R if they are not linearly dependent over R.

Let M be a module over a unital commutative ring R, and let X be a
(finite or infinite) subset of M. The set X generates M as an R-module if and
only if, given any non-zero element m of M, there exist xq,x9,..., 2, € X
and 1,79, ..., € R such that

m:T11’1+T2$2+"'+Tk.Z‘k

(see Lemma 3.1). In particular, a module M over a unital commutative ring R
is generated by a finite set {z1,xs,..., 2%} if and only if any element of M
can be represented as a linear combination of xq, xs, ..., z; with coefficients
in the ring R.

A module over a unital commutative ring is freely generated by the empty
set if and only if it is the zero module.

Definition Let M be a module over a unital commutative ring R, and let

X be a subset of M. The module M is said to be freely generated by the
set X if the following conditions are satisfied:
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(i) the elements of X are linearly independent over the ring R;

(ii) the module M is generated by the subset X.

Definition A module over a unital commutative ring is said to be free if
there exists some subset of the module which freely generates the module.

Definition Let M be a module over a unital commutative ring R. Elements
X1, X, ..., T, of M are said to constitute a free basis of M if these elements are
distinct, and if the R-module M is freely generated by the set {x1, zo, ..., zx}.

Lemma 6.1 Let M be a module over an unital commutative ring R. FEle-
ments T, X, ..., T of M constitute a free basis of that module if and only
if, given any element m of M, there exist uniquely determined elements
r1,79,...,7k of the ring R such that

m =112y + reZo + - -+ Ty

Proof First suppose that x1,x,..., 2. is a list of elements of M with the
property that, given any element m of M, there exist uniquely determined
elements r1,79,...,7, of R such that

m:T1[E1+T2$2—|—"'+TkZL’}C.

Then the elements xq,xs, ...,z generate M. Also the uniqueness of the
coefficients 71,7, ..., r, ensures that the zero element 0, of M cannot be
expressed as a linear combination of xq,x», ...,z unless the coeffients in-

volved are all zero. Therefore these elements are linearly independent and
thus constitute a free basis of the module M.

Conversely suppose that x1, xs, ...,z is a free basis of M. Then any ele-
ment of M can be expressed as a linear combination of the free basis vectors.
We must prove that the coefficients involved are uniquely determined. Let
ri,7o, ..., and s1, Sg, ..., s be elements of the coefficient ring R satisfying

T1 + 71Xy + -+ +TEpTr = S1X1 + Soko + - - - + SpTk.
Then
(7’1 — 51)1'1 -+ (7"2 — 82).1'2 + 4 (T’k — Sk)iL'k = OM

But then r; —s; = 0 and thus r; = s; for j = 1,2,...,n, since the elements of
any free basis are required to be linearly independent. This proves that any
element of M can be represented in a unique fashion as a linear combination
of the elements of a free basis of M, as required. |}
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Proposition 6.2 Let M be a free module over a unital commutative ring R,
and let X be a subset of M that freely generates M. Then, given any R-
module N, and given any function f: X — N from X to N, there exists a
unique R-module homomorphism o: M — N such that | X = f.

Proof We first prove the result in the special case where M is freely gen-
erated by a finite set X. Thus suppose that X = {z1,x9,..., 2%}, where
the elements xq,xs, ...,z are distinct. Then these elements are linearly
independent over R and therefore, given any element m of M, there exist
uniquely-determined elements 71,75, ..., 7, of R such that

m =7rixy + reXg + - + rgl.

(see Lemma 6.1). It follows that, given any R-module N, and given any
function f: X — N from X to IV, there exists a function ¢: M — N from M
to N which is characterized by the property that

(rixy + 1oz + - -+ rpay) = rf (@) + raf (x2) + -+ e f ().

for all 71,79, ..., 7. It is an easy exercise to verify that this function is an R-
module homomorphism, and that it is the unique R-module homomorphism
from M to N that extends f: X — N.

Now consider the case when M is freely generated by an infinite set X. Let
N be an R-module, and let f: X — N be a function from X to N. For each
finite subset Y of X, let My denote the submodule of M that is generated
by Y. Then the result we have just proved for modules freely generated
by finite sets ensures that there exists a unique R-module homomorphism
vy: My — N from My to N such that ¢y (y) = f(y) for ally € Y.

Let Y and Z be finite subsets of X, where YNZ # (). Then the restrictions
of the R-module homomorphisms ¢y: My — N and ¢z: Mz — N to Mynz
are R-module homomorphisms from Mynz to N that extend f|YNZ:YNZ —
N. But we have shown that any extension of this function to an R-module
homomorphism from My~; — N is uniquely-determined. Therefore

§0Y|MYmZ = SOZ|MYnZ = ¥Yynz-

Next we show that My N My = Myqny. Clearly Myn~y; C My and Mynz C
My. Let YUZ = {xy,x9,...,21}, where 1,9, ..., x are distinct. Then,
given any element m of My N My, there exist uniquely-determined elements
ri,7a,...,7, of R such that

m =1rixy+7reolg+ -+ rpli.
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But this element m is expressible as a linear combination of elements of
Y alone, and as a linear combination of elements of Z alone. Therefore,
for each index i between 1 and k, the corresponding coefficient r; is zero
unless both z; € Y and z; € Z. But this ensures that z is expressible as
a linear combination of elements that belong to Y N Z. This verifies that
MY N MZ = Msz.

Let m € M. Then m can be represented as a linear combination of the
elements of some finite subset Y of X with coefficients in the ring R. But
then m € My. It follows that M is the union of the submodules My as Y
ranges over all finite subsets of the generating set X.

Now there is a well-defined function ¢: M — N characterized by the
property that ¢(m) = ¢y (m) whenever m belongs to My for some finite
subset Y of X. Indeed suppose that some element m of M belongs to both
My and M, where Y and Z are finite subsets of M. Then m € My, since
we have shown that My N My = Mypnz. But then ¢y (m) = ¢ynz(m) =
¢wz(m). This result ensures that the homomorphisms ¢: My — N defined on
the submodules My of M generated by finite subsets Y of X can be pieced
together to yield the required function ¢: M — N. Moreover, given elements
x and y of M, there exists some finite subset Y of M such that x € My and
y € My. Then

vz +y)=py(z+y) =ev(@) +ov(y) = o(z) + oY),
and
p(re) = ey(re) = roy(z) = ro(z)
for all r € R. Thus the function p: M — N is an R-module homomor-
phism. The uniqueness of the R-module homomorphisms ¢y then ensures

that ¢: M — N is the unique R-module homomorphism from M to N that
extends f: X — N, as required. |}

Proposition 6.3 Let R be a unital commutative ring, let M and N be R-
modules, let F' be a free R-module, let m: M — N be a surjective R-module
homomorphism, and let ¢: F — N be an R-module homomorphism. Then
there exists an R-module homomorphism 1: F' — M such that ¢ = 7 o).

Proof Let X be a subset of the free module F' that freely generates F'. Now,
because the R-module homomorphism 7: M — N is surjective, there exists
a function f: X — M such that 7(f(z)) = ¢(x) for all x € X. It then
follows from Proposition 6.2 that there exists an R-module homomorphism
Y F— M such that ¢(z) = f(x) for all x € X. Then n(¢(z)) = n(f(x)) =
o(x) for all z € X. But it also follows from Proposition 6.2 that any R-
module homomorphism from F' to N that extends ¢|X: X — N is uniquely
determined. Therefore m o 1) = ¢, as required. |
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Proposition 6.4 Let R be a unital commutative ring, let M be an R-module,
let F' be a free R-module and let m: M — F' be a surjective R-module homo-
morphism. Then M = kerm @ F.

Proof It follows from Proposition 6.3 (applied to the identity automorphism
of F') that there exists an R-module homomorphism ¢: FF — M with the
property that w(¢(f)) = f for all f € F. Let 0:kerm @ F — M be defined
so that O(k, f) = k+¢(f) for all f € F. Then f:kerm & F — M is an
R-module homomorphism. Now

m(m = (w(m))) = w(m) — (7 0 P)(m(m)) = 7(m) — w(m) = OF,

where O denotes the zero element of F. Therefore m — ¢(n(m)) € kerm
for all m € M. But then m = 0(m — ¢ (7(m)), 7(m)) for all m € M. Thus
O:kerm & F — M is surjective.

Now let (k, f) € ker 6, where k € kerm and f € F. Then ¢(f) = —k. But
then f = n((f)) = —n(k) = 0p. Also k = ¥ (0p) = 0y, where 0y, denotes
the zero element of the module M. Therefore the homomorphism 6: ker 7 &
F — M has trivial kernel and is therefore injective. This homomorphism
is also surjective. It is therefore an isomorphism between ker 7w & F' and M.
The result follows. |}

6.2 Free Modules over Integral Domains

Definition A module M over an integral domain R is said to be a free
module of finite rank if there exist elements by, b, ..., by € M that constitute
a free basis for M. These elements constitute a free basis if and only if, given
any element m of M, there exist uniquely-determined elements 1,75, ..., 7%
of R such that

m:7“151—|-7“2b2+"'+7"kbk.

Proposition 6.5 Let M be a free module of finite rank over an integral do-
main R, let by, b, ... by be a free basis for M, and let my,mq,...,m, be
elements of M. Suppose that p > k, where k is the number elements con-
stituting the free basis of m. Then the elements my, ma, ..., m, are linearly
dependent over R.

Proof We prove the result by induction on the number k& of elements in the
free basis. Suppose that £ = 1, and that p > 1. If either of the elements
my or mg is the zero element 0j; then my, mo, ..., m, are certainly linearly
dependent. Suppose therefore that my # 0j; and mso # 0j;. Then there exist
non-zero elements s; and s of the ring R such that m; = s1b1, and mo = s9b1,
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because {b; } generates the module M. But then semq—symg = 0y. It follows
that the elements m; and msy are linearly dependent over R. This completes
the proof in the case when k = 1.

Suppose now that M has a free basis with k£ elements, where k£ > 1, and
that the result is true in all free modules that have a free basis with fewer
than k elements. Let by, bq, ..., b, be a free basis for M. Let v: M — R be
defined such that

l/(?"lbl + Tgbg + -+ kak) =T1.

Then v: M — R is a well-defined homomorphism of R-modules, and ker v
is a free R-module with free basis by, b3, ...,b;. The induction hypothesis
therefore guarantees that any subset of ker v with more than k£ — 1 elements
is linearly dependent over R.

Let my, ma,...,m, be a subset of M with p elements, where p > k. If
v(m;) = Og for j = 1,2,...,p, where O denotes the zero element of the
integral domain R, then this set is a subset of ker v, and is therefore linearly
dependent. Otherwise v(m;) # Og for at least one value of j between 1 and
p. We may assume without loss of generality that v(mq) # Og. Let

m;- =v(my)m; —v(mj)my for j=2,3,...,p.

Then v(m/;) = 0, and thus m/ € kerv for j =2,3,...,p. It follows from the

induction hypothesis that the elements my, my, ..., m; of kerv are linearly
dependent. Thus there exist elements ry,73,...,7, of R, not all zero, such
that

p
Z ij;- = OM
j=2
But then

_ (Z rjz/(mj)> my + Z'f’jy(ml)mj = 0y.

Now v(mq) # Og. Also r; # Og for at least one value of j between 2 and
p, and any product of non-zero elements of the integral domain R is a non-
zero element of R. It follows that r;v(m;) # Og for at least one value of j
between 2 and p. We conclude therefore that the elements my, mo, ..., m, are
linearly dependent (since we have expressed the zero element of M above as a
linear combination of my, mo, ..., m, whose coefficients are not all zero). The
required result therefore follows by induction on the number k of elements
in the free basis of M. |}

Corollary 6.6 Let M be a free module of finite rank over an integral do-
main R. Then any two free bases of M have the same number of elements.
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Proof Suppose that by, b, ..., b is a free basis of M. The elements of any
other free basis are linearly independent. It therefore follows from Proposi-
tion 6.5 that no free basis of M can have more than k£ elements. Thus the
number of elements constituting one free basis of M cannot exceed the num-
ber of elements constituting any other free basis of M. The result follows. |}

Definition The rank of a free module is the number of elements in any free
basis for the free module.

Corollary 6.7 Let M be a module over an integral domain R. Suppose
that M is generated by some finite subset of M that has k elements. If some
other subset of M has more than k elements, then those elements are linearly
dependent.

Proof Suppose that M is generated by the set g1, g, . .., gr. Let 6: R¥ — M
be the R-module homomorphism defined such that

k

O(r1,79, ... Tk) = ergj

j=1

for all (r1,79,...,7:) € R¥. Then the R-module homomorphism 6: RF — M
is surjective.

Let my,mo,...,m, be elements of M, where p > k. Then there exist
elements t1,%s,...,t, of R* such that 0(t;) = m; for j = 1,2,...,p. Now
RF is a free module of rank k. It follows from Proposition 6.5 that the
elements ?1,1,...,t, are linearly dependent. Therefore there exist elements
r1,T2,...,7p of R, not all zero, such that

Tltl —+ Tgtg + e 4 Tptp
is the zero element of R¥. But then
rimy 4+ romg + -+ -+ 1rpymy, = 0(rity + roty + - -+ 1pt,) = O,

where 0;; denotes the zero element of the module M. Thus the elements
my, Mg, ..., m, are linearly dependent. The result follows. |}

6.3 Torsion Modules

Definition A module M over an integral domain R is said to be a torsion
module if, given any element m of M, there exists some non-zero element r
of R such that rm = 0,, where 0, is the zero element of M.
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Lemma 6.8 Let M be a finitely-generated torsion module over an integral
domain R. Then there exists some non-zero element t of R with the property
that tm = Oy for all m € M, where 0y denotes the zero element of M.

Proof Let M be generated as an R-module by my, ms,...,mg. Then there
exist non-zero elements ry,7ry,...,r, of R such that r,m; = 0y, for ¢+ =
1,2,...,k. Let t = riro---r,. Now the product of any finite number of
non-zero elements of an integral domain is non-zero. Therefore ¢t # 0. Also
tm; = 0p for e = 1,2, ..., k, because r; divides t. Let m € M. Then

m = s1my + SogMmg + -+ + SpMmy,
for some s1,89,...,5; € R. Then

tm = t(31m1 + Somg + -+ - + skmk)
81<tm1) + Sg(tm2> + -+ sk(tmk) = OM,

as required. |}

6.4 Free Modules of Finite Rank over Principal Ideal
Domains

Proposition 6.9 Let M be a free module of rank n over a principal ideal
domain R. Then every submodule of M is a free module of rank at most n
over R.

Proof We prove the result by induction on the rank of the free module.

Let M be a free module of rank 1. Then there exists some element b of
M that by itself constitutes a free basis of M. Then, given any element m
of M, there exists a uniquely-determined element r of R such that m = rb.
Given any non-zero submodule N of M, let

I={reR:rbe N}.

Then I is an ideal of R, and therefore there exists some element s of R such
that I = (s). Then, given n € N, there is a uniquely determined element r
of R such that n = rsb. Thus N is freely generated by sb. The result is
therefore true when the module M is free of rank 1.

Suppose that the result is true for all modules over R that are free of
rank less than k. We prove that the result holds for free modules of rank k.
Let M be a free module of rank k£ over R. Then there exists a free basis
bi,ba, ..., by for M. Let v: M — R be defined such that

I/(le1 +1roby 4 -+ - + kak;) =T
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Then v: M — R is a well-defined homomorphism of R-modules, and ker v is
a free R-module of rank £ — 1.

Let N be a submodule of M. If N C ker v the result follows immediately
from the induction hypothesis. Otherwise v(N) is a non-zero submodule of
a free R-module of rank 1, and therefore there exists some element n; € N
such that v(N) = {rv(n;) : r € R}. Now N Nkerv is a submodule of a free
module of rank k£ — 1, and therefore it follows from the induction hypothesis
that there exist elements ns,...,n, of N Nkerv that constitute a free basis
for NNker v. Moreover p < k, because the induction hypothesis ensures that
the rank of N Nkerv is at most k — 1

Let n € N. Then there is a uniquely-determined element r; of R such
that v(n) = rv(ny). Then n —riny € N Nkerv, and therefore there exist
uniquely-determined elements ry, ..., 7, of R such that

N — TNy = ToNg + - - TpNyp.

It follows directly from this that ny,ng,...,n, freely generate N. Thus N is
a free R-module of finite rank, and

rank N = p < k = rank M.

The result therefore follows by induction on the rank of M. |}

6.5 Torsion-Free Modules

Definition A module M over an integral domain R is said to be torsion-
free if rm is non-zero for all non-zero elements r of R and for all non-zero
elements m of M.

Proposition 6.10 Let M be a finitely-generated torsion-free module over a
principal ideal domain R. Then M is a free module of finite rank over R.

Proof It follows from Corollary 6.7 that if M is generated by a finite set with
k elements, then no linearly independent subset of M can have more than k
elements. Therefore there exists a linearly independent subset of M which
has at least as many elements as any other linearly independent subset of
M. Let the elements of this subset be by, 0o, ...,b,, where b; # b; whenever
¢ # j, and let F' be the submodule of M generated by by, bs,...,0,. The
linear independence of by, b, ..., b, ensures that every element of F' may be
represented uniquely as a linear combination of by, bs, ..., b,. It follows that
F'is a free module over R with basis by, b, . .., by.

Let m € M. The choice of by, by, ..., b, so as to maximize the number
of members in a list of linearly-independent elements of M ensures that
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the elements by, by, ..., b,,m are linearly dependent. Therefore there exist
elements sy, s2,...,5, and r of R, not all zero, such that

81b1+82b2+"'+8pbp—7’m=0M

(where 0j; denotes the zero element of M). If it were the case that r = O,
where Or denotes the zero element of R, then the elements by, by, ..., b, would
be linearly dependent. The fact that these elements are chosen to be linearly
independent therefore ensures that r # 0g. It follows from this that, given
any element m of M, there exists a non-zero element r of R such that rm € F.
Then r(m+ F') = F in the quotient module M/F. We have thus shown that
the quotient module M /F is a torsion module. It is also finitely generated,
since M is finitely generated. It follows from Lemma 6.8 that there exists
some non-zero element ¢ of the integral domain R such that t(m + F) = F
for all m € M. Then tm € F for all m € M.

Let ¢o: M — F be the function defined such that p(m) = tm for all
m € M. Then ¢ is a homomorphism of R-modules, and its image is a
submodule of F'. Now the requirement that the module M be torsion-free
ensures that tm # 0, whenever m # 0j;. Therefore ¢: M — F' is injective.
It follows that p(M) =2 M. Now R is a principal ideal domain, and any
submodule of a free module of finite rank over a principal ideal domain is
itself a free module of finite rank (Proposition 6.9). Therefore (M) is a free
module. But this free module is isomorphic to M. Therefore the finitely-
generated torsion-free module M must itself be a free module of finite rank,
as required. Jj

Lemma 6.11 Let M be a module over an integral domain R, and let
T ={me& M :rm =0y for some non-zero element r of R},
where Oy denotes the zero element of M. Then T is a submodule of M.

Proof Let mi,my € T. Then there exist non-zero elements s; and s, of R
such that s;mq = 0y and somg = 0yy. Let s = s155. The requirement that
the coefficient ring R be an integral domain then ensures that s is a non-zero
element of R. Also smy = 07, smo = 0y, and s(rmy) = r(smy) = 0y for
all r € R. Thus m; +mo € T and rmy € T for all r € R. It follows that T
is a submodule of R, as required. |}

Definition Let M be a module over an integral domain R. The torsion
submodule of M is the submodule 7" of M defined such that

T ={m e M : rm = 0) for some non-zero element r of R},
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where 0,; denotes the zero element of M. Thus an element m of M belongs
to the torsion submodule 7" of M if and only if there exists some non-zero
element r of R for which rm = 0y,.

Proposition 6.12 Let M be a finitely-generated module over a principal
ideal domain R. Then there exists a torsion module T over R and a free
module F' of finite rank over R such that M =T & F.

Proof Let T be the torsion submodule of M. We first prove that the quotient
module M/T is torsion-free.

Let m € M, and let r be a non-zero element of the ring R. Suppose
that rm € T. Then there exists some non-zero element s of R such that
s(rm) = 0p. But then (sr)m = 0p; and sr # Or (because R is an integral
domain), and therefore m € T It follows that if m € M, r # 0g and m ¢ T
then rm ¢ T. Thus if m + T is a non-zero element of the quotient module
M/T then so is rm + T for all non-zero elements r of the ring R. We have
thus shown that the quotient module M /T is a torsion-free module over R.

It now follows from Proposition 6.10 that M /T is a free module of finite
rank over the principal ideal domain R. Let F' = M/T, and let v: M — F
be the quotient homomorphism defined such that v(m) = m + T for all
m € M. Then kerv = T'. It follows immediately from Proposition 6.4 that
M =T ® F. The result follows. |

6.6 Finitely-Generated Torsion Modules over Princi-
pal Ideal Domains

Let M be a finitely-generated torsion module over an integral domain R.
Then there exists some non-zero element ¢ of R with the property that tm =
0y for all m € M, where 0, denotes the zero element of M (Lemma 6.8).

Proposition 6.13 Let M be a finitely-generated torsion module over a prin-
cipal ideal domain R, and let t be a non-zero element of R with the property
that tm = Oy for allm € M. Let t = p’flp];2 o-phs where ki, ko, ... ks are
positive integers and py, pa, ..., Ps are prime elements of R that are pairwise
coprime (so that p; and p; are coprime whenever i # j). Then there exist
unique submodules My, Ms, ..., My of M such that the following conditions
are satisfied:—

(i) the submodule M; is finitely generated for i =1,2,...,s;
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(iil) M; = {m € M : pfim = 0y} fori=1,2,...,s.

Proof The result is immediate if s = 1. Suppose that s > 1. Let v; =
prj for i = 1,2,...,s (so that v; is the product of the factors pfj of t
J#

for j # i). Then, for each integer i between 1 and s, the elements p; and
v; of R are coprime, and ¢t = vipfi. Moreover any prime element of R that
is a common divisor of vy, vs,...,v, must be an associate of one the prime
elements pi,pa,...,...,ps of R. But p; does not divide v; for i = 1,2,...,s.
It follows that no prime element of R is a common divisor of vy, vs,. .., v,
and therefore any common divisor of these elements of R must be a unit of R
(i.e., the elements vy, v9, . .., v of R are coprime). It follows from Lemma 2.7
that there exist elements wy, wo, ..., ws of R such that

VW + vawg + - - - + Vsws = 1p,

where 1; denotes the multiplicative identity element of R.
Let ¢; = v;w; fori =1,2,...,s. Then g1 +qgs+---+¢qs = 1r, and therefore

S
m = E am
i=1

for all m € M. Now t is the product of the elements pf fore=1,2,...,s.
Also p?j divides v; and therefore divides ¢; whenever j # i. It follows that
t divides pfiqi fori =1,2,...,s, and therefore pfiqim = 0y for all m € M.
Thus ¢ggm € M; fort =1,2,...,s, where

M;={m € M :pfim = 0.}
It follows that the homomorphism
oM ®&My®--- DMy — M

from My, & My @ --- & M, to M that sends (my, ma,...,ms) to my + mg +
-+« 4 myg is surjective. Let (my,ma,...,ms) € kerp. Then pfimi = 0 for
1=1,2,...,s, and

m1+m2+---—|—ms:0M
Now v;m; = 0 when ¢ # j because p?j divides v;. It follows that ¢;m; = 0
whenever i # j, and therefore

m; = q11m; + qa2m; + -4 qsm; = q;m;
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for j =1,2,...,s. But then
Opr = qi(ma +may + -+ +my) = gm; = m;.
Thus ker ¢ = {(0ps,0ns,...,0x)}. We conclude that the homomorphism
o:MydMy&---d My — M

is thus both injective and surjective, and is thus an isomorphism.

Moreover M; is finitely generated for i = 1,2,...,s. Indeed M; = {g;m :
m € M}. Thus if the elements fi, fo, ..., f, generate M then the elements
qif1,Gife, - -, qifn generate M;. The result follows. |}

Proposition 6.14 Let M be a finitely-generated torsion module over a prin-
cipal ideal domain R, let p be a prime element of R, and let k be a positive
integer. Suppose that p*m = 0y for all m € M. Then there exist elements
bi,ba, ..., bs of M and positive integers ki, ko, ..., ks, where 1 < k; < k for
1=1,2,...,s, such that the following conditions are satisfied:

(i) every element of M can be expressed in the form
r1b1 + roby + - - - 4 1rby
for some elements ri,ry,...,1s € R;
(i) elements ri,ra,...,rs of R satisfy
r1b1 + 1roby + - +1bs = Oy
if and only if p¥ divides v; fori=1,2,...,s.

Proof We prove the result by induction on the number of generators of the
finitely-generated torsion module M. Suppose that M is generated by a
single element g;. Then every element of M can be represented in the form
ri1g1 for some r1 € R. Let ¢: R — M be defined such that ¢(r) = rg; for
all r € R. Then ¢ is a surjective R-module homomorphism, and therefore
M = R/keryp. Now p* € kery, because p"m = 0. Moreover R is a
principal ideal domain, and therefore ker ¢ is the ideal tR generated by some
element t of R. Now t divides p*. It follows from the unique factorization
property possessed by principal ideal domains (Proposition 2.21) that ¢ is
an associate of p¥' for some integer k; satisfying 1 < k; < k. But then
r1g1 = Oy if and only if p** divides r;. The proposition therefore holds when
the torsion module M is generated by a single generator.
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Now suppose that the stated result is true for all torsion modules over the
principal ideal domain R that are generated by fewer than n generators. Let
J1, 92, - - -, gn be generators of the module M, and let p be a prime element of
R, and suppose that there exists some positive integer k with the property
that p*m = 0y for all m € M. Let k be the smallest positive integer with this
property. Now if A is a positive integer with the property that p"g; = 0, for
i=1,2,...,n then p"m = 0y for all m € M, and therefore h > k. It follows
that there exists some integer i between 1 and n such that p*~lg; # 0.
Without loss of generality, we may assume that the generators have been
ordered so that p*~'g; # 05;. Let by = g; and k; = k. Then an element r of
R satisfies rb; = 0 if and only if p* divides .

Let L be the submodule of M generated by b;. Then the quotient module
M/ L is generated by L+ go, L+ g3, ..., L+ g,. It follows from the induction
hypothesis that the proposition is true for the quotient module M /L, and
therefore there exist elements bg, bg, .. b of M/L such that generate M /L
and positive integers ko, ks, ..., ks Such that

roby + 13by 4 -+ 7 by = Onyr

if and only if p* divides r; for i = 2,3,...,s. Let my, ms, ..., m, be elements
of M chosen such that m; + L = b; for i = 2,3,...,s. Then p*m,; € L for
i =1,2,...,s, and therefore p*im,; = t;b; for some element t; of R, where

k; < k. Moreover
Onr = pPm; = p* "iphim; = p" Mty

and therefore p* divides p*~*it; in R. It follows that p* divides ¢; in R for
i = 2,3,...,5. Let vy,vs,...,v, € R be chosen such that t; = pFiv; for
i=23,...,s and let b; = m; — v;b;. Then pFib;, = p*m; — t;b; = 05, and
bi+L=0b;fori=23,...,s

Now, given m € M, there exist elements ro,73,...,7s € R such that

m+L:T262+T383+"'+7"8i)5:T262+T353+"'+T5b8+[z-

Then
rgbg+r363+---—|—7“5bs—m€L

and therefore there exists r; € R such that
7“2192 +T’3[)3 + - +7’Sbs —m = —7“1[)1,

and thus
m = r1by + roby + 1r3bs + - - - + 15bs.
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This shows that the elements by, bs, ..., b, of M generate the R-module M.
Now suppose that ry, 79, ..., 75 are elements of R with the property that

7"1[)1 +T’2b2 +7’3b3 + - +sts = OM

Then R R R
roby + 13b3 + - - + 15bs = Onyi,

because by € L and b; + L = IA)Z when i > 1, and therefore p* divides r; for
1 =2,3,...,s. But then r;b; = 0y, for 1 = 2,3,...,s, and thus r;b; = 0y,.
But then p*' divides r;. The result follows. |

Corollary 6.15 Let M be a finitely-generated torsion module over a prin-
cipal ideal domain R, let p be a prime element of R, and let k be a positive
integer. Suppose that p*m = 0y for allm € M. Then there exist submodules
Ly, Lo, ..., Ly of M and positive integers ki, ks, ..., ks, where 1 < k; < kg for
1=1,2,...,s, such that

and
Li = R/p"R
fori=1,2,...,s, where p*R denotes the ideal of R generated by p~i.

Proof Let by,bs,...,bs and kq, ko, ..., ks have the properties listed in the
statement of Proposition 6.14. Then each b; generates a submodule L; of
M that is isomorphic to R/p*R. Moreover M is the direct sum of these
submodules, as required. |}

6.7 Cyclic Modules and Order Ideals

Definition A module M over a unital commutative ring R is said to be
cyclic if there exists some element b of M that generates M.

Let M be a cyclic module over a unital commutative ring R, and let b be
a generator of M. Let ¢: R — M be the R-module homomorphism defined
such that ¢(r) = rb for all » € R. Then ker ¢ is an ideal of R. Moreover if
s € ker ¢ then srb = rsb = 0y for all » € R, and therefore sm = 0, for all
m € M. Thus

kero ={re R:rm =0 for all m € M}.
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Definition Let M be a cyclic module over a unital commutative ring R.
The order ideal o(M) is the ideal

oM)={reR:rm=0forall me M}.

Lemma 6.16 Let M be a cyclic module over a unital commutative ring R,

and let o(M) the the order ideal of M. Then M = R/o(M).

Proof Choose a generator b of M. The R-module homomorphism that sends
r € R to rb is surjective, and its kernel is o(M). The result follows. |

6.8 The Structure of Finitely-Generated Modules over
Principal Ideal Domains

Proposition 6.17 Let M be a finitely generated module over a principal
tdeal domain R. Then M can be decomposed as a direct sum of cyclic mod-
ules.

Proof Let T be the torsion submodule of M. Then there exists a sub-
module F' of M such that M = T @ F and F' is a free module of finite
rank (Proposition 6.12). Now F = R¢ where d is the rank of F. Indeed if
by, by, ..., bq is a free basis for F' then the function sending (r1,79,...,74) to

T1by + 19bo + - - - + 14bg

is an R-module isomorphism from the direct sum R¢ of d copies of the ring R
to F'. Moreover R is itself a cyclic R-module, since it is generated by its
multiplicative identity element 1g.

On applying Proposition 6.13 to the torsion module T', we conclude that
there exist positive integers ki, ko, ..., ks, prime elements py, po,...,ps of R
that are pairwise coprime, and uniquely-determined finitely-generated sub-
modules such that T; = {m € M : pfim = 0y} fori =1,2,...,s and

T'=T10T,® - &1

It then follows from Corollary 6.15 that each T; can in turn be decomposed
as a direct sum of cyclic submodules. The result follows. |

Let R, M, T and F, d, T\, T, ..., Ty, p1,p2,--.,ps and ki, ko, ... ks be
defined as in the proof of Proposition 6.17. Then F = M/T. Now any
two free bases of F' have the same number of elements, and thus the rank
of F' is well-defined (Corollary 6.6). Therefore d is uniquely-determined.
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Also the prime elements pi,ps,...,ps of R are uniquely-determined up to
multiplication by units, and the corresponding submodules 77,75, ..., T, are
determined by pq, po, .. ., Ds.

However the splitting of the submodule 7; of M determined by p; into
cyclic submodules is in general not determined.

Lemma 6.18 Let R be a principal tdeal domain and p is a prime element
of R. Then R/pR is a field.

Proof Let I be an ideal satisfying pR C I C R then there exists some
element s of R such that I = sR. But then s divides p, and p is prime, and
therefore either s is a unit, in which case I = R, or else s is an associate of p,
in which case I = pR. In other words the ideal pR is a maximal ideal of the
principal ideal domain R whenever p € R is prime. But then the only ideals
of R/pR are the zero ideal and the quotient ring R/pR itself, and therefore
R/pR is a field, as required. |

Lemma 6.19 Let R be a principal ideal domain, and let p be a prime element
of R. Then P’ R/p" 'R = R/pR for all positive integers j.

Proof Let 6;: R — p’ R/p’*'R be the R-module homomorphism that sends
r € Rto p’r +p/ TR for all r € R. Then

kerf; = {r € R:p’r € P 'R} = pR.

Indeed if r € R satisfies p’r € p/ 'R then p/r = p’*'s for some s € R. But
then p/(r — ps) = O and therefore r = ps, because R is an integral domain.
It follows that 6,: R — p’ R/p’™' R induces an isomorphism from R/pR to
P R/pP T R, and thus

R/pR=p'R/p’*'R

for all positive integers j, as required. |

Proposition 6.20 Let R be a principal ideal domain, let p be a prime el-
ement of R, and let L be a cyclic R-module, where L = R/p*R for some
positive integer k. Then p/ L/p’ 'L = R/pR when j < k, and p’ L/p’ 1L is
the zero module when 7 > k.

Proof Suppose that j < k. Then

. PR/P"R

PL/YTL
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Indeed the R-module homomorphism from R/p*R to p’ R/p’*1 R that sends
p'r+p* R to p!r+p’ 1 R is surjective, and its kernel is the subgroup p’*' R /p* R
of P R/p*R. But P R/p" 'R = R/pR (Lemma 6.19). This completes the
proof when j < k. When j > k then p/L and p 'L are both equal to the
zero submodule of L and therefore their quotient is the zero module. The
result follows. |

Let R be a principal ideal domain, let p be a prime element of R, and let
K = R/pR. Then K is a field (Lemma 6.18). Let M be an R-module. Then
p? M /piT M is a vector space over the field K for all non-negative integers j.
Indeed there is a well-defined multiplication operation K x (p/ M/p’ ™' M) —
M /p’™1 M defined such that (r + pR)(p’z + p ™' M) = p/ro + p’ ™' M for all
r € R and x € M, and this multiplication operation satisfies all the vector
space axioms.

Proposition 6.21 Let M be a finitely-generated module over a principal
ideal domain R. Suppose that p"M = {0y} for some prime element p of R.
Let ky, ko, ..., ks be non-negative integers chosen such that

and

Li = R/p™R

fori=1,2,...,s. Let K be the vector space R/pR. Then, for each non-
negative integer j, the dimension dimg p’ M /p? A M of p? M /p?™* M is equal
to the number of values of i satisfying 1 < i < s for which k; > 7j.

Proof Let L be a cyclic R-module, where L = R/p*R for some positive
integer k. Then For each value of i between 1 and s, the quotient module
p'L;/p’ T L; is a field over the vector space K. Now

PM/pP UM =Ly )P Ly @ p Ly Ly @ - @ L [P,

and therefore

i=1
It then follows from Proposition 6.20 that
. ; ; 1 if g < ks
) +17r _ 19
dimye p’ Li/p" Li —{ 0 ifj > k.

Therefore dimg p? M /p’ ™' M is equal to the number of values of i between 1
and s for which k; > j, as required. |}
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Proposition 6.22 Let M be a finitely-generated module over a principal
ideal domain R. Suppose that p*M = {0y} for some prime element p of R.
Then the isomorphism class of M is determined by the sequence of values of
dimg p? M/p? ™I M, where 0 < j < k.

Proof It follows from Corollary 6.15 that there exist non-negative integers
ki, ks, ..., ks such that

and
Li = R/p"R

for i = 1,2,...,s. Let K be the vector space R/pR. Suppose that the
exponents ki, ko, ..., ks are ordered such that k4 < ky < --- < k,. Then,
for each non-negative integer j, the dimension dimg p’ M /p’ ™1 M is equal to
the number of values of ¢ satisfying 1 < ¢ < s for which k; > j. Therefore
s — dimg M/pM is equal to the number of values of ¢ satisfying 1 < i < s
for which k; = 0, and, for j > 1, dimg p M/p"™'M — p?~*M/p? M is equal
to the number of values of 7 satisfying 1 < ¢ < s for which k; = j. These
quantities determine ki, ko, ..., ks, and therefore determine the isomorphism
class of M, as required. |}

Theorem 6.23 (Structure Theorem for Finitely-Generated Modules over a
Principal Ideal Domain) Let M be a finitely-generated module over a principal
ideal domain R. Then there exist prime elements pi,ps,...,ps of R and
uniquely-determined non-negative integers d and ki1, ki 2, ..., kim,;, where

kin <kio <o <kjm,,

such that M is isomorphic to the direct sum of the free R-module R® and the
cyclic modules R/pfi’jR fori=1,2,...,s and j = 1,2,...,m;. The non-
negative integer d is uniquely determined, the prime elements py,po, ..., ps
are deteremined subject to reordering and replacement by associates, and the
non-negative integers ki1, ki, . .., kim, are uniquely determined, once p; has
been determined for v =1,2,...,s, subject to the requirement that

kig <kip <...<kim,.

Proof The existence of the integer d and the prime elements pq, po, ..., s
and the non-negative integers k;; follow from Proposition 6.17, Proposi-
tion 6.12, and Proposition 6.13. The uniqueness of d follows from the fact
that d is equal to the rank of M /T, where T is the torson submodule of M.
The uniqueness of k;1,ki2,...,kim, for i = 1,2,... s, given pi,ps,...,Ds
then follows on applying Proposition 6.22. |}
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6.9 The Jordan Normal Form

Let K be a field, and let V' be a KJz]-module, where K|[z] is the ring of
polynomials in the indeterminate x with coefficients in the field K. Let
T:V — V be the function defined such that Tv = zv for all v € V. Then
the function T is a linear operator on V. Thus any K[z] module is a vector
space that is provided with some linear operator 1" that determines the effect
of multiplying elements of V' by the polynomial x.

Now let T:V — V be a linear operator on a vector space V' over some
field K. Given any polynomial f with coefficients in K, let f(z)v = f(T)v
for all v € V, so that

(2™ + ap 2™+ ag)v = an T + a1 T Mo+ -+ -+ agu

for all v € V. Then this operation of multiplication of elements of V' by
polynomials with coefficients in the field K gives V' the structure of a module
over the ring K[z] of polynomials with coefficients in the field K.

Lemma 6.24 Let V' be a finite-dimensional vector space over a field K. let
T:V — V be a linear operator on V', and let f(x)v = f(T)v for all poly-
nomials f(x) with coefficients in the field K. Then V is a finitely-generated
torsion module over the polynomial ring K |x].

Proof Let dimyg V' = n, and let eq,es,...,€, be a basis of V' as a vector
space over K. Then ey, eq,..., e, generate V' as a vector space over K, and
therefore also generate V' is a K[z]-module. Now, for each integer i between
1 and n, the elements

e;,Tei, T?e;, ..., T"e;

are linearly dependent, because the number of elements in this list exceeds
the dimension of the vector space V, and therefore there exist elements
0,01, ,0, of K such that

aanei " ai,n—lTn_lei + a6 = Oy,
where Oy denotes the zero element of the vector space V. Let
fz(.T) = ai,nxn + ai,n—ll'n_l + -+ i,

and let f(z) = fi(z) fo(x)--- fu(z). Then f;(T)e; = 0 and thus f(T)e; = Oy
fori=1,2,...,nand for all v € V. It follows that f(T)v = Oy for allv € V.
Thus V is a torsion module over the polynomial ring K[z]. |}
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A field K is said to be algebraically closed if every non-zero polynomial
has at least one root in the field K. A polynomial f(z) with coefficients in
an algebraically closed field K is irreducible if and only if f(z) = = — A for
some \ € K.

Proposition 6.25 Let V' be a finite-dimensional vector space over an alge-
braically closed field K, and let TV — V be a linear operator on V. Then
there exist elements Ay, Ag, ..., As of K, and non-negative integers

ki, ki oo kim, (1<i<s5s)

elements
Vi1, Vigy oo Vi, (1 <1< 5)

of V', and vector subspaces
‘/;,17‘/;,27"'7‘/;,'”” (]- SZSS)
of V' such that the following conditions are satisfied:—

(i) V is the direct some of the vector subspaces V;; fori=1,2,... s and
j: 1a27"'7mi:'

(i) Vi ={f(T)vi,: f(z) € K[z]} fori=1,2,...,s and j =1,2,...,m;;

(iii) the ideal {f(x) € K[z] : f(T)v;; = Oy} of the polynomial ring K|x]
is generated by the polynomial (x — \;)* fori = 1,2,...,s and j =
1, 27 e,y

Proof This result follows directly from Theorem 6.23 and Lemma 6.24. |}

Let V be a finite-dimensional vector space over a field K, let T:V — V'
be a linear transformation, let v be an element of V' with the property that

V=A{f(T)v: f e Kz},

let k& be a positive integer, and let A be an element of the field K with the
property that the ideal

{f(z) € Klz] - f(T)v=0v}

of the polynomial ring K|x] is generated by the polynomial (z — \)¥. Let
v; = (T —Nvfor j =0,1,...,k — 1. Then V is a finite-dimensional vector
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space with basis vy, v1,...,vx—1 and Tv; = Av; +v;4q for j =0,1,..., k. The
matrix of the linear operator V' with respect to this basis then takes the form

A0 0 ... 00
1 A0 ... 00

1 A ... 00
000 ... X0
000 ... 1T XA

It follows from Proposition 6.25 that, given any vector space V over an
algebraically closed field K, and given any linear operator 7:V — V on
V', there exists a basis of V with respect to which the matrix of T is a
block diagonal matrix where the blocks are of the above form, and where
the values occurring on the leading diagonal are the eigenvalues of the linear
operator T'. This result ensures in particular that any square matrix with
complex coefficients is similar to a matrix in Jordan normal form.
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