
Module MA3412: Integral Domains, Modules
and Algebraic Integers

Section 5
Hilary Term 2014

D. R. Wilkins

Copyright c© David R. Wilkins 1997–2014

Contents

5 Discrete Valuations and Dedekind Domains 81
5.1 The Valuation Ring of a Discrete Valuation . . . . . . . . . . 81
5.2 Discrete Valuation Rings . . . . . . . . . . . . . . . . . . . . . 84
5.3 Local Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5 Divisibility Of Ideals in Dedekind Domains . . . . . . . . . . . 87
5.6 Localization in Integral Domains . . . . . . . . . . . . . . . . 92
5.7 Factorization of Ideals in Dedekind Domains . . . . . . . . . . 97
5.8 Divisibility of Ideals in Integral Domains . . . . . . . . . . . . 100
5.9 Discrete Valuations on Dedekind Domains . . . . . . . . . . . 104
5.10 Uniqueness of Ideal Factorization in Dedekind Domains . . . . 107
5.11 The Class Group of a Dedekind Domain . . . . . . . . . . . . 107
5.12 Fractional Ideals . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.13 Characterizations of Dedekind Domains . . . . . . . . . . . . . 111

i



5 Discrete Valuations and Dedekind Domains

5.1 The Valuation Ring of a Discrete Valuation

Definition Let K be a field, and let Z ∪ {∞} be the set obtained from the
ring Z of integers by adding a symbol∞ with the properties that∞+∞ =∞,
n+∞ =∞+ n =∞, ∞− n =∞ and ∞ > n for all integers n. A discrete
valuation on the field K is a function ν:K → Z ∪ {∞} which satisfies the
following conditions:

(i) ν(a) =∞ if and only if a = 0K ;

(ii) ν(ab) = ν(a) + ν(b) for all a, b ∈ K;

(iii) ν(a+ b) ≥ min(ν(a), ν(b)) for all a, b ∈ K.

Example Let p be a prime number. Then, given any non-zero rational
number r, there exist integers k, u and v such that r = pkuv−1 and neither
u nor v is divisible by p. The integer k is uniquely determined by r, and we
define ν(p)(r) = k. We also define ν(p)(0) =∞. Then the function

ν(p):Q→ Z ∪ {∞}

defined in this fashion is a discrete valuation on the field Q of rational num-
bers.

Lemma 5.1 Let R be an integral domain that is embedded as a subring of its
field of fractions K, and let p be a prime element of R. Then p determines
a discrete valuation

ν(p):K → Z ∪ {∞}

on K such that ν(p)(r) ≥ 0 for all r ∈ R, ν(p)(p) = 1 and ν(p)(r) = 0 for all
non-zero elements r of R that are not divisible by p.

Proof Let p be a prime element of R. Then, given any non-zero element c
of K, there exists a unique integer kc such that c = pkcuv−1 for some non-
zero elements u and v of R that are not divisible by p. Let ν(p)(c) = kc.
Also let ν(p)(0K) = ∞. We obtain in this fashion a well-defined function
ν(p):K → Z ∪ {∞}. If c is a non-zero element of R then c = pku, where k is
some non-negative integer and u is some non-zero element of R that is not
divisible by p. It follows that ν(p)(r) ≥ 0 for all r ∈ R. Also ν(p) = 1, and
ν(r) = 0 for all non-zero elements of r that are not divisible by p.

Let c1 and c2 be non-zero elements of K. Then there exist integers k1
and k2 such that c1 = pk1u1v

−1
1 and c2 = pk2u2v

−1
2 . Then ν(p)(c1) = k1 and
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ν(p)(c2) = k2. Now c1c2 = pk1+k2(u1u2)(v1v2)
−1. Moreover neither u1u2 nor

v1v2 is divisible by p. It follows that

ν(p)(c1c2) = k1 + k2 = ν(p)(c1) + ν(p)(c2).

Let k = min(k1, k2). Then

c1 + c2 = pk(v2p
k1−ku1 + v1p

k2−ku2)(v1v2)
−1,

and therefore
ν(p)(c1 + c2) ≥ k = min(ν(c1), ν(c2)).

Thus ν(p):K → Z ∪ {∞} is a discrete valuation on K with the required
properties.

Proposition 5.2 Let K be a field, let ν:K → Z∪{∞} be a discrete valuation
on K, where ν(c) 6= 0 for at least one non-zero element c of K, and let

R = {c ∈ K : ν(c) ≥ 0}.

Then R is a subring of K with exactly one maximal ideal M . This maximal
ideal M satisfies

M = {c ∈ K : ν(c) > 0}.

Moreover the ring R is a principal ideal domain, and, given any non-zero
proper ideal I of R, there exists a positive integer k such that I = Mk.

Proof The multiplicative identity element 1K of K satisfies 1K 6= 0K and
12
K = 1K . It follows that ν(1K) 6=∞, and therefore ν(1K) ∈ Z and ν(1K) +
ν(1K) = ν(1K). Therefore ν(1K) = 0, and thus 1K ∈ R. Also (−1K)2 = 1K .
It follows that 2ν(−1K) = 0, and therefore −1K ∈ R. If r ∈ R and s ∈ R
then ν(r + s) ≥ min(ν(r), ν(s)) ≥ 0 and ν(rs) = ν(r) + ν(s) ≥ 0, and
therefore r + s ∈ R and rs ∈ R. Also −r = (−1K)r, and therefore −r in R.
Thus R is a subring of R. Moreover R is an integral domain, because it is a
subring of a field.

Let c be a non-zero element of K. Then ν(c−1) + ν(c) = ν(c−1c) =
ν(1K) = 0, and therefore ν(c−1) = −ν(c). It follows that an element u of R
is a unit of R if and only if ν(u) = 0.

If a and b are elements of M and if r is an element of R then ν(a+ b) ≥
min(ν(a), ν(b)) > 0, ν(−a) = ν(−1K) + ν(a) = ν(a) > 0, and ν(ra) =
ν(r) + ν(a) ≥ ν(a) > 0, and therefore a + b ∈ M , −a ∈ M and ra ∈ M . It
follows that M is an ideal of R.

If I is an ideal of R, and if I 6⊂M , then there exists some element u of I
satisfying ν(u) = 0. Then u is a unit of R, and therefore I = R. This proves
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that M is a maximal ideal of R. Moreover if N is a maximal ideal of R, then
N ⊂M , and therefore N = M . Thus M is the only maximal ideal of R.

The value of ν(r) is a positive integer for all non-zero r ∈ M . It follows
that there exists an element p of M such that ν(p) ≤ ν(r) for all r ∈ M .
Then ν(p−1r) ≥ 0 for all r ∈M , and therefore p−1r ∈ R for all r ∈M . Thus
p divides every element of M in the ring R. It follows that the ideal M is
the principal ideal generated by p.

Let K∗ be the multiplicative group of non-zero elements of the field K.
Then ν(K∗) is an additive subgroup of Z, because ν|K∗:K∗ → Z is a ho-
momorphism of groups. It follows that ν(K∗) = dZ, where d = ν(p). Thus
ν(p) divides ν(r) for all r ∈ R. Let r be a non-zero element of M . Then
ν(r) = dk for some positive integer k. But then ν(p−kr) = −kd + ν(r) = 0,
and thus p−kr is a unit of the integral domain R. Thus r = pku, where k is
a positive integer and u is a unit of R.

Let I be a non-zero proper ideal of R. Then there exists r0 ∈ I such that
r0 6= 0R and ν(r0) ≤ ν(r) for all r ∈ I. Then r0 divides every element r of I,
and thus I = (r0). Moreover ν(r0) = dk for some positive integer k, where
d = ν(p). But then r0 = pku for some unit u of R. It follows that

I = (r0) = (pk) = (p)k = Mk.

Thus R is a principal ideal domain, and every non-zero proper ideal of R is
of the form Mk for some positive integer k, as required.

Definition Let K be a field, and let ν:K → Z∪{∞} be a discrete valuation
on K. The valuation ring determined by this valuation is the subring R of
K defined such that

R = {c ∈ K : ν(c) ≥ 0}.

Lemma 5.3 Let K be a field, and let ν:K → Z∪{∞} be a discrete valuation
on K. Then the valuation ring R of ν is integrally closed.

Proof Let f(x) be a monic polynomial of degree n with coefficients in R,
where n > 0. Then there exist elements a0, a1, . . . , an−1 of R such that

f(x) = xn +
n−1∑
i=0

aix
i.

Let c be a non-zero element of the field K. Then

f(c)− cn =
n−1∑
i=0

aic
i,
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and ν(ai) ≥ 0 for i = 0, 1, . . . , n− 1. If ν(c) < 0 then

ν(aic
i) = ν(ai) + iν(c) ≥ iν(c) ≥ (n− 1)ν(c)

for i = 0, 1, . . . , n− 1, and therefore

ν(cn − f(c)) = ν(f(c)− cn) ≥ (n− 1)ν(c) > nν(c) = ν(cn).

Thus ν(cn − f(c)) > ν(cn) whenever ν(c) < 0, and therefore f(c) 6= 0K
whenever ν(c) < 0. It follows that a non-zero element c of K cannot be a
root of the polynomial f(x) unless it belongs to the valuation ring R. Thus
R is integrally closed.

5.2 Discrete Valuation Rings

Let R be an integral domain embedded in its field of fractions K as a subring
of K, and let p be a prime element of R. Then p determines a corresponding
valuation ν(p):K → Z∪ {∞}. on the field K. The valuation ring R(p) of the
valuation ν(p) is the subring of K consisting of all elements c of K for which
ν(p)(c) ≥ 0. It follows that

R(p) = {rs−1 : r, s ∈ R and p does not divide s}.

Thus the valuation ring R(p) may be regarded as the ring of fractions S−1(p)R,
where S(p) is the multiplicatively closed subset of R consisting of all elements
of R that are not divisible by the prime element p of R.

Now the principal ideal (p) generated by the prime element p of R is a
prime ideal of R (see Lemma 2.19). The multiplicatively closed subset S(p) is
the complement R \ (p) of (p) in R. It follows from the definition of localiza-
tions of rings at prime ideals that the valuation ring R(p) is the localization
of the integral domain R at the prime ideal (p).

The basic properties of the valuation rings determined by discrete valu-
ations on a field K are set out in the statement of Proposition 5.2. That
proposition shows in particular that the valuation ring R of a discrete valu-
ation is an integral domain that has a unique maximal ideal M . Moreover
every non-zero proper ideal of R is of the form Mk for some positive inte-
ger k. We shall show that these properties characterize those rings that are
the valuation rings of discrete valuations.

Definition A discrete valuation ring is an integral domain R with a unique
maximal ideal M whose proper ideals are all of the form Mk for some positive
integer k.
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Proposition 5.4 Let R be a discrete valuation ring embedded in its field of
fractions K as a subring of K, and let M be the unique maximal ideal of R.
If M is the zero ideal then R is a field, and is the valuation ring determined
by the trivial valuation on R. If M is not the zero ideal then M = (p) for
some prime element p of R. There is then a well-defined discrete valuation
ν(p):K → Z∪{∞} on K characterized by the property that ν(p)(p

ku) = k for
all integers k and for all units u of R. The ring R is then the valuation ring
determined by the discrete valuation ν(p) on the field of fractions K of R.

Proof If M is the zero ideal then the only ideals of R are the zero ideal and
the whole of R, and therefore R is a field, and thus R = K. The valuation
ring of a trivial valuation is the whole of the field on which the valuation is
defined.

It remains to consider the case where M is a non-zero proper ideal of R.
First we show that there exists an element p of R for which (p) = M . If
there were no element p of M satisfying (p) = M then, given any non-zero
element r of M , there would exist some integer k satisfying k ≥ 2 for which
(r) = Mk, and therefore r ∈M2 for all r ∈M , and thus M ⊂M2. But then
M2 = M , and therefore Mk = M for all positive integers k, contradicting the
assumption that there is no element p of M for which M = (p). Therefore
there must exist some element p of M for which (p) = M . Moreover p is a
prime element of R, because the ideal (p) is a maximal ideal of R.

The prime element p of R determines a discrete valuation ν(p):K → Z ∪
{∞}, where ν(p)(p) = 1 and ν(p)(r) = 0 for all elements r of R that are
not divisible by p (see Lemma 5.1). Then ν(p)(r) ≥ 0 for all r ∈ R, and
ν(p)(p

ku) = k for all integers k and units u of R.
Let c be a non-zero element of the field of fractions K which satisfies

ν(p)(c) ≥ 0. Then there exist non-zero elements r and s of R such that
sc = r. Let (r) = (pk) and (s) = (pl). Then there exist units u and v of R
such that r = pku and s = plv. It follows that ν(p)(r) = k and ν(p)(s) = l.
Then c = pk−luv−1. Moreover k − l = ν(p)(c) ≥ 0. It follows that c ∈ R.
Thus R is the valuation ring determined by the discrete valuation ν(p) on the
field of fractions K, as required.

Corollary 5.5 Every discrete valuation ring is a principal ideal domain.

Proof Let R be a discrete valuation ring, and let M be the unique maximal
ideal of R. It follows from Proposition 5.4 that there exists an element p of
M that generates the maximal ideal M . But then Mk = (p)k = (pk) for all
positive integers k. Thus Mk is a principal ideal for all positive integers k.
But the only ideals of the discrete valuation ring R are these ideals Mk.
Therefore R is a principal ideal domain.
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Corollary 5.6 Every discrete valuation ring is an integrally-closed domain.

Proof A discrete valuation ring is the valuation ring of some discrete valu-
ation defined on its field of fractions (Corollary 5.4) But the valuation ring
of any discrete valuation is integrally closed (Lemma 5.3). The result fol-
lows.

Remark Corollary 5.6 can also be deduced as follows. Every discrete valu-
ation ring is a principal ideal domain (Corollary 5.5). Every principal ideal
domain is a unique factorization domain (Lemma 2.23). And every unique
factorization domain is integrally closed (Proposition 2.47).

5.3 Local Domains

Definition A unital commutative ring is said to be local if it has exactly
one maximal ideal.

Definition A local domain is an integral domain that has exactly one max-
imal ideal.

Proposition 5.7 A local domain is a discrete valuation ring if and only if
it is a principal ideal domain.

Proof A field is a discrete valuation ring, a local domain and a principal
ideal domain.

It follows from Corollary 5.5 that every discrete valuation ring is a prin-
cipal ideal domain.

Let R be a local domain that is not a field but is a principal ideal domain,
and let M be the unique maximal ideal of R. Every non-zero prime element
of a principal ideal domain generates a maximal ideal of that domain (see
Lemma 2.24). Because the local domain R has only one maximal ideal, it
follows that all prime elements of R are associates of one another.

Let p be a prime element of R. Then M = (p). Every principal ideal
domain is a unique factorization domain (Lemma 2.23). Therefore every
element of R factors as a product of prime elements of R. Therefore every
non-zero element of R that is not a unit of R can be represented uniquely in
the form pku, where k is a positive integer and u is a unit of R. It follows
if I is a non-zero proper ideal of R then I is a principal ideal, and therefore
I = (pk) = (p)k = Mk for some positive integer. Thus R is a discrete
valuation ring. The result follows.

86



5.4 Dedekind Domains

Definition A Dedekind domain is an integrally-closed Noetherian domain
in which every non-zero prime ideal is maximal.

It follows from this definition that a unital commutative ring R is a
Dedekind domain if and only if it possesses all four of the following proper-
ties:

(i) R is an integral domain;

(ii) every ideal of R is finitely generated,

(iii) R is integrally closed in its field of fractions;

(iv) every non-zero prime ideal of R is maximal.

Properties (i) and (ii) characterize Noetherian domains, and property (iii)
characterizes integrally-closed domains.

Lemma 5.8 Every principal ideal domain is a Dedekind domain.

Proof Let I be an ideal of a principal ideal domain R. Then I = (r) for
some r ∈ I, and thus I is finitely generated. Therefore every principal ideal
domain is Noetherian domain.

Principal ideal domains are unique factorization domains (Lemma 2.23),
and unique factorization domains are integrally closed (Proposition 2.47).
Therefore every principal ideal domain is integrally closed.

Every non-zero prime ideal of a principal ideal domain is a maximal ideal
(Lemma 2.24). The result follows.

Example It follows from Proposition 4.29 that the ring of integers of any
quadratic number field is a Dedekind domain.

The ring of integers of any algebraic number field can be shown to be a
Dedekind domain.

5.5 Divisibility Of Ideals in Dedekind Domains

We shall prove that if P is a maximal ideal of a Dedekind domain R, then
P divides all ideals contained within it.

Given an ideal I of a unital commutative ring R, and given a ∈ R, we
denote by aI the ideal {au : u ∈ I}. This ideal aI is the product (a)I of the
principal ideal (a) and the ideal I.
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Lemma 5.9 Let R be an integral domain, let a be a non-zero element of R,
and let I and J be ideals of R. If aI ⊂ aJ , then I ⊂ J , and if aI = aJ then
I = J .

Proof Suppose that aI ⊂ aJ . Then, given any u ∈ I, there exists v ∈ J
such that au = av. But then u = v, because R is an integral domain and
a 6= 0R. It follows that u ∈ J . Thus I ⊂ J whenever aI ⊂ aJ . It follows
that if I and J are ideals of R satisfying aI = aJ then J ⊂ I and I ⊂ J , and
therefore I = J , as required.

Lemma 5.10 Let R be a Noetherian ring. Then any proper ideal of R is
contained in a maximal ideal of R.

Proof Let I be a proper ideal of R, and C be the collection consisting of
all proper ideals J of R satisfying I ⊂ J . This collection has a maximal
element M , because R is Noetherian (see Proposition 3.5). Then M is a
proper ideal of R that is not contained in any other proper ideal of R. This
ideal is thus a maximal ideal of R, and I ⊂M , as required.

Remark There is an axiom of set theory, known as the Axiom of Choice,
which is equivalent to the statement that any Cartesian product of non-empty
sets is non-empty. A consequence of this axiom is Zorn’s Lemma, which is
invoked to justify the existence of maximal elements of partially-ordered sets
in which every totally-ordered subset is bounded above.

A relation � on a set S is said to be a partial order if it is reflexive,
transitive and anti-symmetric. Thus the relation � on S is a partial order
on S if and only if the following conditions are satisfied: x � x for all x ∈ S;
x � y and y � z together imply x � z for all x, y, z ∈ S; x � y and y � x
together imply x = y for all x, y ∈ S. A subset T of a partially-ordered set
S is said to be totally ordered if, given x, y ∈ T , either x � y or y � x. An
element u of S is an upper bound for a totally-ordered subset T of S if x � u
for all x ∈ T . An element x of S is said to be maximal if there does not exist
any element y of S satisfying x 6= y and x � y.

Zorn’s Lemma may be stated as follows:

Zorn’s Lemma. Let S be a non-empty partially-ordered set.
Suppose that there exists an upper bound for each totally-ordered
subset of S. Then S contains a maximal element.

Let I be a proper ideal of a unital commutative ring R, and let S be the
set of proper ideals J of R that satisfy I ⊂ J . Now set inclusion is a partial
order on the set S. Given any totally-ordered subset T of S, the union of
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the proper ideals of R belonging to T is itself a proper ideal of R, and is an
upper bound for T . Assuming Zorn’s Lemma, we conclude that the set S
has a maximal element M . This maximal element is a maximal ideal of R,
and I ⊂ M . Thus it is a consequence of Zorn’s Lemma that every proper
ideal of a unital commutative ring R is contained in a maximal ideal of that
ring.

Proposition 5.11 Let R be a Noetherian ring. Then every non-zero ideal
of R contains a product of one or more non-zero prime ideals of R.

Proof Let C be the collection consisting of all ideals of R that do not contain
a product of one or more non-zero prime ideals of R. We must prove that
this collection C is empty.

Suppose that the collection C were non-empty. Then it would contain a
maximal element, because the ring R is Noetherian (Proposition 3.5). Sup-
pose that the ideal I were a maximal element of the collection C. Then I
would not itself be a prime ideal, and therefore there would exist ideals J and
K such that J 6⊂ I, K 6⊂ I and JK ⊂ I (see Lemma 2.20). Then I + J 6= I,
I +K 6= I and (I + J)(I +K) ⊂ I. The maximality of I would ensure that
neither I + J nor I + K would belong to the collection C. Therefore there
would exist non-zero prime ideals P1, P2, . . . , Ps and Q1, Q2, . . . , Qt such that

P1P2 · · ·Ps ⊂ I + J and Q1Q2 · · ·Pt ⊂ I +K.

But then
P1P2 · · ·PsQ1Q2 · · ·Qt ⊂ I,

and therefore the ideal I would not belong to the collection C, contradicting
the choice of I as a maximal element of this collection. The result follows.

The following result, applicable to finitely-generated ideals in integrally-
closed domains, makes use of the Determinant Trick (Proposition 4.11) that
provides a convenient framework for obtaining results concerning finitely-
generated ideals and modules that are consequences of the Cayley-Hamilton
Theorem (Theorem 4.9).

Proposition 5.12 Let R be an integrally-closed domain, let J be a finitely-
generated non-zero ideal of R, and let r and s be non-zero elements of R.
Suppose that rJ ⊂ sJ . Then s divides r in R.

Proof There is a well-defined R-module endomorphism ϕ: J → J of J de-
fined such that rv = sϕ(v) for all v ∈ J . It then follows from an application
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of the Determinant Trick that there exists a positive integer n and elements
a0, a1, . . . , an−1 of R such that

ϕn(v) +
n−1∑
k=0

akϕ
k(v) = 0R

for all v ∈ J (see Corollary 4.15, which is a special case of Proposition 4.11).
On multiplying this identity by sn and applying the definition of ϕ, we find
that

rnv +
n−1∑
k=0

aks
n−krkv = 0R

for all v ∈ J , and therefore

rn +
n−1∑
k=0

aks
n−krk = 0R.

Thus the element r/s of the field of fractions of R is integral over R. But R
is integrally closed in its field of fractions. It follows that s divides r in R,
as required.

Proposition 5.13 Let R be a Dedekind domain, let P be a maximal ideal
of R, let I be a non-zero ideal of R satisfying I ⊂ P , and let

L = {r ∈ R : rP ⊂ I}.

Then PL = I.

Proof It follows from the definition of L that PL ⊂ I. We must prove that
I ⊂ PL.

Let s be a non-zero element of I, and let N = {r ∈ R : rP ⊂ (s)}. Then
N is an ideal of R, s ∈ N and sP ⊂ PN ⊂ (s).

The Dedekind domain R is a Noetherian domain. It follows from Proposi-
tion 5.11 that the principal ideal (s) contains some product of non-zero prime
ideals of R. Let n be the smallest positive integer such that (s) contains a
product of n non-zero prime ideals of R, and let Q1, Q2, . . . , Qn be non-zero
prime ideals of R satisfying

Q1Q2 · · ·Qn ⊂ (s).

Now every maximal ideal of R is a prime ideal (Lemma 2.15). Moreover a
product of ideals is contained in a prime ideal if and only if one of the factors
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of that product is contained in the prime ideal (see Lemma 2.20). Therefore
Qi ⊂ P for at least one value of i between 1 and n. We may suppose that
Q1 ⊂ P .

Every non-zero prime ideal of the Dedekind domain R is a maximal ideal.
Therefore Q1 is a maximal ideal of R. It follows that Q1 = P .

If n = 1 then P ⊂ (s) ⊂ I ⊂ P , and therefore I = P , N = L = R and
PL = I. There is nothing further to prove in this case.

If n > 1 then Q2Q3 · · ·Qn ⊂ N . But Q2Q3 · · ·Qn 6⊂ (s), because the
choice of n ensures that no product of fewer than n prime ideals is contained
in (s). Therefore N 6⊂ (s).

The Dedekind domain R is integrally closed. Moreover the maximal
ideal P of R is finitely generated, because R is Noetherian. It follows from
Proposition 5.12 that if r ∈ R satisfies rP ⊂ sP then s divides r in R, and
therefore r ∈ (s). Now N 6⊂ (s). It follows that PN 6⊂ sP .

Now PN ⊂ (s), and therefore PN = sJ for some ideal J of R. Also
sP ⊂ PN and sP 6= PN , and therefore P ⊂ J (Lemma 5.9) and P 6= J .
It follows from the maximality of the ideal P that J = R, and therefore
PN = (s).

We have now shown that, given any non-zero element s of the ideal I,
there exists an ideal N of R such that PN = (s). It follows that N ⊂ L and
s ∈ PL. Therefore I ⊂ PL, and hence I = PL, as required.

Proposition 5.14 Let R be a Noetherian domain, and let P be a maximal
ideal of R. Suppose that, given any non-zero ideal I of R contained in P
there exists some ideal L of R such that I = PL. Then, given any non-zero
ideal I of R contained in P , there exists a positive integer k and an ideal H
of R such that H 6⊂ P and P kH = I.

Proof Let the ideals I0, I1, I2, I3, . . . be defined recursively so that I0 = I
and

Ij+1 = {r ∈ R : rP ⊂ Ij}
for all non-negative integers j. Then Ij ⊂ Ij+1 and PIj+1 ⊂ Ij for all non-
negative integers j. Then I0, I1, I2, I3, . . . is an ascending chain of ideals of
R.

Let j be a non-negative integer. Suppose that Ij ⊂ P . Then there exists
some ideal Lj of R such that Ij = PLj. But then Lj ⊂ Ij+1, and therefore
Ij = PIj+1. The maximal ideal P of R is a proper ideal of R, and the ideal Ij
is finitely generated, because R is a Noetherian domain. A straightforward
application of Nakayama’s Lemma (Corollary 4.12) shows that PIj 6= Ij for
all non-negative integers j (see Corollary 4.13). It follows that Ij 6= Ij+1

when Ij ⊂ P .
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The Dedekind domain R is Noetherian, and therefore satisfies the Ascend-
ing Chain Condition (Proposition 3.5). Therefore there exists some positive
integer m such that Ij = Im whenever j ≥ m. Then Im 6⊂ P .

Now I0 ⊂ P and Im 6⊂ P . Let k be the smallest positive integer for which
Ik 6⊂ P , and let H = Ik. Then Ij = PIj+1 whenever 0 ≤ j < k. It follows
that I = I0 = P kIk = PH and H 6⊂ P , as required.

Corollary 5.15 Let R be a Dedekind domain, let P be a maximal ideal of
R, and let I be an non-zero ideal of R satisfying I ⊂ P . Then there exists a
positive integer k and an ideal H of R such that H 6⊂ P and P kH = I.

Proof The result follows on combining the results of Proposition 5.13 and
Proposition 5.14.

Corollary 5.16 A local domain is a Dedekind domain if and only if it is a
discrete valuation ring.

Proof Every discrete valuation ring is a principal ideal domain (Corol-
lary 5.5). Moreover every principal ideal domain is a Dedekind domain
(Lemma 5.8). Therefore every discrete valuation ring is a Dedekind domain.

Let R be a local domain that is a Dedekind domain, and let M be the
unique maximal ideal of R. Then R is a Noetherian domain, and every proper
ideal of R is contained in M (Lemma 5.10).

Let I be a non-zero proper ideal of R. Then I ⊂ M . It follows from
Corollary 5.15 that there exists some positive integer k and some ideal H of
R such that H 6⊂ M and I = MkH. But then H is not a proper ideal of R,
and therefore H = R and I = Mk. Thus every non-zero proper ideal of R
is of the form Mk for some positive integer k, and therefore R is a discrete
valuation ring, as required.

5.6 Localization in Integral Domains

Let R be an integral domain embedded in its field of fractions K as a subring
of K. A subset S of R is multiplicatively closed if and only if 1R ∈ S and
uv ∈ S for all u, v ∈ S. Given any multiplicatively-closed subset S of R whose
elements are all non-zero, there is a well-defined subring S−1R of the field of
fractions K of R consisting of those elements of K that can be represented
in the form rs−1 for some r ∈ R and s ∈ S.

Given any prime ideal P of R, the complement R \ P of P in R is a
multiplicatively-closed subset of R whose elements are all non-zero. Let RP =
(R\P )−1R. Then RP is a well-defined subring of the field of fractions K. An
element c of K belongs to the ring RP if and only if there exist elements r
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and s of R such that c = rs−1 and s 6∈ P . This subring RP is the localization
of the integral domain R at the prime ideal P .

Let P be a prime ideal of R. Given any ideal I of R, we denote by IP the
ideal of the localization RP of R at P generated by I. The ideal IP consists
of all elements of RP that can be represented in the form as−1 for some a ∈ I
and s ∈ R \ P . If X is a subset of I that generates I as an ideal of R, then
X also generates IP as an ideal of RP . Also

IP ∩R = {r ∈ R : sr ∈ I for some s ∈ R \ P}.

Let E be an ideal of the localization RP of the integral domain R at
the prime ideal P . Then the intersection E ∩ R is an ideal of R. Moreover
E = (E ∩ R)P . Indeed (E ∩ R)P ⊂ E, and given any element e of E, there
exist r ∈ R and s ∈ R \ P such that se = r. But then r ∈ E ∩ R, and
therefore e ∈ (E ∩R)P .

The localization RP of the integral domain R at a prime ideal P of R is
a local domain whose unique maximal ideal is PP . The elements of RP that
do not belong to PP are units of RP .

We now prove a series of results that establish relationships between an
integral domain and its localizations at prime ideals of that domain.

Lemma 5.17 Let R be an integral domain, let I and J be ideals of R, let P
be a prime ideal of R, let RP be the localization of R at the prime ideal P of
R, and let IP , JP and (IJ)P be the ideals of RP generated by I, J and IJ
respectively. Then (IJ)P = IPJP .

Proof We consider the integral domain and its localizations to be embedded
as subrings of the field of fractions K of R. Then I ⊂ IP and J ⊂ JP . An
element of IJ can be represented in the form

u1v1 + · · ·+ ukvk,

and all such elements belong to IPJP . It follows that (IJ)P ⊂ IPJP . Let
a ∈ IP and and b ∈ JP . Then there exist u ∈ I, v ∈ J and s, t ∈ R \ P such
that a = us−1 and b = vt−1. Then ab = uvs−1t−1, and therefore ab ∈ (IJ)P .
Moreover IPJP is the ideal of RP generated by products of the form ab where
a ∈ IP and b ∈ JP . It follows that IPJP ⊂ (IJ)P . Thus (IJ)P = IPJP , as
required.

Lemma 5.18 Let R be an Noetherian domain embedded in its field of frac-
tions K as a subring of K, let P be a prime ideal of R, and let RP be the
subring of K that is the localization of R at the prime ideal P . Then RP is
a Noetherian domain.

93



Proof Let E be an ideal of RP . Then E∩R is an ideal of R. But every ideal
of R is finitely generated, because R is a Noetherian domain. Let b1, b2, . . . , bn
be elements of R that generate E∩R as an ideal over R. Then these elements
also generate E as an ideal over RP , and therefore E is finitely generated.
The result follows.

Lemma 5.19 Let R be an integral domain embedded in its field of frac-
tions K as a subring of K, let P be a prime ideal of R, and let RP be the
subring of K that is the localization of R at the prime ideal P . Let Q be a
prime ideal of R satisfying Q ⊂ P . Then QP is a prime ideal of RP , and
Q = QP ∩R.

Proof No element of R\P belongs also to Q, because Q ⊂ P , and therefore
1K 6∈ QP . Thus QP is a proper ideal of RP .

Clearly Q ⊂ QP ∩R. Let r ∈ QP ∩R. Then there exist q ∈ Q and s ∈ R
such that sr = q and s 6∈ P . Then sr ∈ Q and s 6∈ Q. It follows from the
definition of prime ideals that r ∈ Q. Thus QP ∩R = Q.

Let r1, r2, s1 and s2 be elements of R, where s1 6∈ P and s2 6∈ P . Suppose
that r1s

−1
1 6∈ QP and r2s

−1
2 6∈ QP . Then r1 6∈ QP ∩ R and r2 6∈ QP ∩ R, and

therefore r1 6∈ Q and r2 6∈ Q. But then r1r2 6∈ Q, because Q is a prime ideal
of R, and therefore r1r2s

−1
1 s−12 6∈ QP . It follows that QP is a prime ideal of

RP , as required.

Lemma 5.20 Let R be an integral domain that is integrally closed in its field
of fractions K. Then the localization RP of R at any prime ideal P of R is
integrally closed in K.

Proof Let P be a prime ideal of R, and let c be an element of RP that is
the root of a monic polynomial

xn + an−1x
n−1 + · · · a1x+ a0

whose coefficients a0, a1, . . . , an−1 belong to RP . Then there exists s ∈ R \P
such that sai ∈ R for i = 0, 1, . . . , n− 1. But then

(sc)n + bn−1(sc)
n−1 + · · · b1(sc) + b0 = 0R,

where bi = sn−iai for i = 0, 1, . . . , n−1. But then bi ∈ R for i = 1, 2, . . . , n−1,
and therefore sc is integral over R. It follows that sc ∈ R, and therefore c ∈
RP . Thus RP is integrally closed for each prime ideal P of R, as required.
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Proposition 5.21 Let R be a Noetherian domain embedded in its field of
fractions K as a subring of K, and, for each maximal ideal P of R, let RP

be the subring of K that is the localization of R at the maximal ideal P . Let
I be an ideal of R, and, for each maximal ideal P of R, let IP be the ideal of
RP generated by the ideal I of R. Then

I =
⋂

P∈Max(R)
IP ,

where Max(R) denotes the set of maximal ideals of R.

Proof Clearly I ⊂
⋂
P∈Max(R) IP . Let c ∈

⋂
P∈Max(R) IP . Then c ∈ IP for

all maximal ideals P of R. Thus, for each maximal ideal P of R, there exist
aP ∈ I and sP ∈ R \ P such that such that sP c = aP . The elements sP
of R generate an ideal H of R. Now sP ∈ H and sP 6∈ P for all maximal
ideals P of P . Thus H is not contained in any maximal ideal of R. It follows
that H = R (Lemma 5.10), and thus 1R ∈ H. It follows that there exist
maximal ideals P1, P2, . . . , Pk of R and elements t1, t2, . . . , tk of R such that
1R =

∑k
i=1 tisPi

. But then

c =
k∑
i=1

tisPi
c =

k∑
i=1

tiaPi
,

and therefore c ∈ I. The result follows.

Corollary 5.22 Let R be a Noetherian domain embedded in its field of frac-
tions K as a subring of K, and, for each maximal ideal P of R, let RP be
the subring of K that is the localization of R at the maximal ideal P . Then

R =
⋂

P∈Max(R)
RP ,

where Max(R) denotes the set of maximal ideals of R.

Proof The result follows immediately on applying Proposition 5.21 to the
particular case where the ideal in the statement of that proposition is the
integral domain itself.

Corollary 5.23 Let R be a Noetherian domain embedded in its field of frac-
tions K as a subring of K, and, for each maximal ideal P of R, let RP be
the subring of K that is the localization of R at the maximal ideal P . Let I
and J be an ideals of R, and, for each maximal ideal P of R, let IP and JP
be the ideals of RP generated by the ideal I and J respectively of R. Then
I ⊂ J if and only if IP ⊂ JP for all maximal ideals P of R. Also I = J if
and only if IP = JP for all maximal ideals P of R.
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Proof If I ⊂ J then IP ⊂ JP for all maximal ideals P of R. Conversely if
IP ⊂ JP for all maximal ideals P of R then

I =
⋂

P∈Max(R)
IP ⊂

⋂
P∈Max(R)

JP = J,

where Max(R) denotes the set of maximal ideals of R, and thus I ⊂ J .
Furthermore I = J if and only if I ⊂ J and J ⊂ I. The result follows.

Proposition 5.24 An integral domain R is a Dedekind domain if and only
if R is Noetherian and the localization RP of R at every maximal ideal P of
R is a Dedekind domain.

Proof Let the integral domain R be embedded in its field of fractions K as
a subring of K. Then the localization RP of P at each maximal ideal P of
R consists of those elements of K that can be represented in the form rs−1

for some r ∈ R and s ∈ R \ P .
Suppose that R is an Dedekind domain. Let P be a maximal ideal of R.

The Dedekind domain R is a Noetherian domain. It follows from Lemma 5.18
that RP is a Noetherian domain. The Dedekind domain R is integrally closed
in its field of fractions K. It follows from Lemma 5.20 that RP is integrally
closed in K. Let L be a non-zero prime ideal of RP . Then L∩R ⊂ P , because
L is a proper ideal of RP and every element of R \ P is a unit of RP . Also
L∩R 6= ∅, 1R ∈ R \ (L∩R), and uv ∈ R \ (L∩R) for all u, v ∈ R \ (L∩R).
It follows that L ∩ R is a non-zero prime ideal of R. But every non-prime
ideal of the Dedekind domain R is a maximal ideal of R. It follows that
L ∩ R = P , and therefore L = (L ∩ R)P = PP . Thus every non-zero prime
ideal of the integrally-closed Noetherian domain RP is a maximal ideal. It
follows that RP is a Dedekind domain.

We have now shown that if R is a Dedekind domain, then RP is a
Dedekind domain for each maximal ideal P of R.

Now suppose that R is a Noetherian domain and that the localization RP

of R at every maximal ideal of R is a Dedekind domain. Then RP is integrally
closed in K for each maximal ideal P of R. It follows that if some element c
of K is a root of a monic polynomial with coefficients in R then c ∈ RP for
all maximal ideals P of R. But the intersections of the localizations RP of R
at the maximal ideals P of R is the integral domain R itself (Corollary 5.22).
It follows that c ∈ R. Thus R is integrally closed in its field of fractions.

Let Q be a non-zero prime ideal of R. Then Q ⊂ P for some maximal
ideal P of R (Lemma 5.10). It follows from Lemma 5.19 that QP is a prime
ideal of RP and Q = QP ∩ P . Thus QP is a non-zero prime ideal of the
Dedekind domain RP . It follows that QP = PP , and therefore Q = P .
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We have thus shown that every non-zero prime ideal of the integrally-closed
Noetherian domain R is a maximal ideal of R. It follows that R is a Dedekind
domain, as required.

Theorem 5.25 An integral domain R is a Dedekind domain if and only if
R is Noetherian and the localization RP of R at every maximal ideal P of R
is a discrete valuation ring.

Proof An integral domain R is a Dedekind domain if and only if R is Noethe-
rian and the localization RP of R at every maximal ideal P of R is a Dedekind
domain (Theorem 5.24). But the localization RP of R at each maximal ideal
of R is a local domain, and a local domain is a Dedekind domain if and only
if it is a discrete valuation ring (Corollary 5.16). The result follows.

5.7 Factorization of Ideals in Dedekind Domains

We shall prove that an integral domain is a Dedekind domain if and only
if every non-zero proper ideal of that domain factors as a product of one or
more maximal ideals of the domain.

Lemma 5.26 Let R be a Dedekind domain, and let I be a non-zero proper
ideal of R. Then the number of maximal ideals P of R satisfying I ⊂ P is
finite.

Proof Every non-zero ideal of a Dedekind domain contains a product of one
or more non-zero prime ideals (Proposition 5.11). But all non-zero prime
ideals of a Dedekind domain are maximal ideals. It follows that the non-zero
proper ideal I of R contains a product Q1Q2 · · ·Qn of maximal ideals of R.

Let P be a maximal ideal of R for which I ⊂ P . Then

Q1Q2 · · ·Qn ⊂ I ⊂ P.

The maximal ideal P is a prime ideal of R (Lemma 2.15), and a product
of ideals is contained in a prime ideal if and only one of the factors of that
product is contained in the prime ideal (see Lemma 2.20). It follows that
Qi ⊂ P for at least one value of i between 1 and n. But if Qi ⊂ P then
Qi = P , because Qi is a maximal ideal and P is a proper ideal. The result
follows.

Lemma 5.27 Let R be an integral domain that is not a field, and let

I = P k1
1 P k2

2 · · ·P km
m ,
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where P1, P2, . . . , Pm are distinct maximal ideals of R, and k1, k2, . . . , km are
positive integers. Let P be a maximal ideal of R, and let RP be the localization
of R at P . If P = Pi then IP = P ki

P , where PP is the maximal ideal of RP .
If P is distinct from P1, P2, . . . , Pm then IP = RP .

Proof Let i be an integer between 1 and m. If P is a maximal ideal distinct
from Pi then Pi contains elements of R \ P , and those elements are units of
RP . It follows that (Pi)P = RP when P is distinct from Pi. Also it follows
from Lemma 5.17 that

IP = (P1)
k1
P (P2)

k2
P · · · (Pm)kmP

for all maximal ideals P of R. It follows that IPi
= (Pi)

ki
Pi

for i = 1, 2, . . . ,m,
and IP = RP for all maximal ideals P that are distinct from P1, P2, . . . , Pm.
The result follows.

Lemma 5.28 Let R be an integral domain, let P be a maximal ideal of R,
and let I and J be ideals of R satisfying I ⊂ J that are contained in the
maximal ideal P . Suppose that the localization RP of R at the maximal
ideal P is a discrete valuation ring. Let IP = P k

P and JP = P j
P . Then j ≤ k.

Proof Every discrete valuation ring is a principal ideal domain (Corol-
lary 5.5). The maximal ideal PP of RP is therefore generated by a prime
element p of RP . Then P n

P = (pn) for all positive integers n. Moreover pj

does not divide pk unless j ≤ k. Thus if I ⊂ J then P k
P ⊂ P j

P , and therefore
j ≤ k, as required.

Lemma 5.29 Let R be an integral domain. Suppose that every non-zero
proper ideal of R factors as a product of one or more maximal ideals of R.
Then the localization of R at every maximal ideal of R is a discrete valuation
ring.

Proof Let P be a maximal ideal of R, let E be a non-zero proper ideal of
RP and let I = E ∩R. Then I is a non-zero proper ideal of R, and E = IP .
Every non-zero proper ideal of R factors as a product of one or more maximal
ideals of R. Therefore there exist distinct maximal ideals P1, P2, . . . , Pm and
positive integers k1, k2, . . . , km such that

I = P k1
1 P k2

2 · · ·P km
m .

It follows from Lemma 5.27 that E = IP = P ki
P if P = Pi and E = IP = RP

if P is distinct from P1, P2, . . . , Pm. We have thus shown that every proper
ideal of RP is of the form P k

P for some positive integer k. Therefore RP is a
discrete valuation ring, as required.
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Lemma 5.30 Let R be an integral domain. Suppose that every non-zero
proper ideal of R factors as a product of one or more maximal ideals of R.
Let I be a non-zero proper ideal of R. Then there are only finitely many
ideals J of R satisfying I ⊂ J .

Proof Let I be a non-zero proper ideal of R. Then there exist distinct
maximal ideals P1, P2, . . . , Pm and positive integers k1, k2, . . . , km such that

I = P k1
1 P k2

2 · · ·P km
m .

Let P be a maximal ideal of R. It follows from Lemma 5.27 that IP = P ki
P if

P = Pi and IP = RP if P is distinct from P1, P2, . . . , Pm. Let J be a non-zero
proper ideal of R satisfying I ⊂ J , let n be the number of maximal ideals of
R that contain the ideal J , and let the prime ideals P1, P2, . . . , Pm be ordered
so that J ⊂ Pi for i = 1, 2, . . . , n and J 6⊂ Pi when n < i ≤ m. Then there
exist integers j1, j2, . . . , jn such that JP = P ji

P when P = Pi for some integer
i between 1 and n. Also JP = RP when P is a maximal ideal distinct from
P1, P2, . . . , Pn. Then

J = P j1
1 P

j2
2 · · ·P jn

n .

Now the localization RP of R at each maximal ideal P of R is a discrete
valuation ring (Lemma 5.29). It follows from Lemma 5.28 that ji ≤ ki for
i = 1, 2, . . . , n. The result follows.

Lemma 5.31 Let R be an integral domain. Suppose that every non-zero
proper ideal of R factors as a product of one or more maximal ideals of R.
Then R is a Noetherian domain.

Proof Let C be a non-empty collection of ideals of R. If all ideals in C are
the zero ideal of R then C the zero ideal is a maximal element of the collection
C. If R belongs to C then R is a maximal element of the collection C. In all
other cases, the collection C contains a non-zero proper ideal I. It follows
from Lemma 5.30 that there exist only finitely many ideals J of R satisfying
I ⊂ J . If I is not itself a maximal element of C then one of the ideals J
of R satisfying I ⊂ J must be a maximal element of C. Thus the integral
domain R satisfies the Maximal Condition. It is therefore a Noetherian
domain (see Proposition 3.5).

Theorem 5.32 An integral domain R is a Dedekind domain if and only if
every non-zero proper ideal of R factors as a product of one or more maximal
ideals of R.
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Proof Let R be an integral domain. Suppose that every non-zero proper
ideal of R factors as a product of one or more maximal ideals of R. Then
R is a Noetherian domain (Lemma 5.31), and the localization of R at each
maximal ideal of R is a discrete valuation ring (Lemma 5.29). It follows from
Theorem 5.25 that R is a Dedekind domain.

We now prove the converse. Let R be a Dedekind domain, and let I be
a non-zero proper ideal of R. If P is a maximal ideal of R for which I ⊂ P
then the localization RP of R at the maximal ideal P is a discrete valuation
ring (Theorem 5.25). The unique maximal ideal of RP is PP . It follows that
if P is a maximal ideal of R and if I ⊂ P then IP = P k

P for some positive
integer k.

Now there exist distinct maximal ideals P1, P2, . . . , Pm such that I ⊂
Pi for i = 1, 2, . . . ,m and I 6⊂ P for all maximal ideals P distinct from
P1, P2, . . . , Pm. Let k1, k2, . . . , km be the positive integers determined such
that IPi

= (Pi)
ki
Pi

, and let

J = P k1
1 P k2

2 · · ·P km
m .

It follows from Lemma 5.27 that JPi
= (Pi)

ki
Pi

= IPi
for i = 1, 2, . . . ,m.

If P is a maximal ideal of R that is distinct from P1, P2, . . . , Pm then
I 6⊂ P . But then I contains units of RP and therefore IP = RP . It fol-
lows that JP = RP = IP for all maximal ideals P that are distinct from
P1, P2, . . . , Pm. Therefore IP = JP for all maximal ideals P of R. It follows
from Corollary 5.23 that I = J . The result follows.

5.8 Divisibility of Ideals in Integral Domains

Lemma 5.33 Let R be an integral domain that is not a field. Suppose that
every non-zero proper ideal of R factors as a product of one or more maximal
ideals of R. Then, given any maximal ideal P of R, there exists a non-zero
ideal H of R such that PH is a principal ideal of R.

Proof The zero ideal is not a maximal ideal of R, because R is not a field.
Let P be a maximal ideal of R, and let s be a non-zero element of P . Then
there exist maximal ideals Q1, Q2, . . . , Qn of R such that

(s) = Q1Q2 · · ·Qn.

Every maximal ideal of R is a prime ideal, and a product of ideals is contained
in a prime ideal if and only one of the factors of that product is contained
in the prime ideal (see Lemma 2.20). It follows that Qi ⊂ P for at least
one value of Q between 1 and n. It then follows from the maximality of Qi
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that Qi = P . We may suppose that Q1 = P . Let H = R if n = 1, and
H = Q2Q3 · · ·Qn if n > 1. Then PH = (s). Morever H is a non-zero ideal
because s is a non-zero element of R. The result follows.

Proposition 5.34 Let R be an integral domain. Suppose that every non-
zero proper ideal of R factors as a product of one or more maximal ideals
of R. Then, given any non-zero proper ideal I of R, there exists a non-zero
ideal L of R for which IL is a principal ideal of R.

Proof If R is a field then R has no non-zero proper ideals, and there is
nothing to prove. Therefore we may assume that R is not a field.

Let I be a non-zero proper ideal of R. Then there exist maximal ideals
P1, P2, . . . , Pn of R such that I = P1P2 · · ·Pn. It follows from Lemma 5.33
that there exist non-zero ideals H1, H2, . . . , Hn of R and non-zero elements
s1, s2, . . . , sn of R such that PiHi = (si) for i = 1, 2, . . . , n. Let L =
H1H2 · · ·Hn and s = s1s2 · · · sn. Then s is a non-zero element of R, be-
cause any product of non-zero elements of an integral domain is non-zero.
Also IL = (s). But then L is a non-zero ideal and IL is a principal ideal.
The result follows.

Lemma 5.35 Let R be an integral domain, and let I, J1 and J2 be ideals
of R satisfying IJ1 = IJ2. Suppose that I is a non-zero proper ideal of R,
and that there exists some non-zero ideal L of R for which IL is a principal
ideal. Then J1 = J2.

Proof The ideal IL is a non-zero principal ideal, and thus there exists a non-
zero element s of R such that IL = (s). Then sJ1 = LIJ1 = LIJ2 = sJ2. It
follows from Lemma 5.9 that J1 = J2, as required.

Lemma 5.36 Let R be an integral domain, and let I and J be ideals satis-
fying J ⊂ I. Suppose that I is a non-zero proper ideal of R, and that there
exists some non-zero ideal L of R for which IL is a principal ideal. Then
there exists some ideal N of R such that J = IN .

Proof The ideal IL is a non-zero principal ideal, and thus there exists a non-
zero element s of R such that IL = (s). Then JL ⊂ IL = (s), and therefore
there exists some ideal N of R such that JL = sN . Then sJ = JIL = sIN ,
and therefore J = IN (see Lemma 5.9).

Definition Let R be an integral domain, and let I and J be ideals of R.
The ideal I is said to divide the ideal J in R if there exists some ideal N of
R such that J = IN .
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When an ideal I divides an ideal J in an integral domain R, we can denote
this relation by writing I|J .

If I and J are ideals of an integral domain R, and if I divides J in R then
J ⊂ I.

A non-zero ideal I of an integral domainR divides some non-zero principal
ideal of I if and only if there exists some non-zero ideal L of I for which IL
is a principal ideal of R.

Proposition 5.37 Let R be an integral domain, and let I be a non-zero ideal
of R. Suppose that there exists a non-zero ideal L of R for which IL is a
principal ideal. Then the ideal I is finitely generated.

Proof Let L be a non-zero ideal of R for which IL is a principal ideal, and
let s be an element of R that generates the principal ideal IL. Then s is
non-zero and IL = (s). It follows that there exist elements v1, v2, . . . , vm of
I and w1, w2, . . . , wm of L such that

s = v1w1 + v2w2 + · · ·+ vmwm.

We show that I is generated by v1, v2, . . . , vm.
Let a be an element of the ideal I. Then aL ⊂ (s), and therefore there

exist elements r1, r2, . . . , rm of R such that awi = sri for i = 1, 2, . . . ,m.
Then

s
m∑
i=1

rivi = a
m∑
i=1

viwi = sa,

and therefore a =
m∑
i=1

rivi. Thus the elements v1, v2, . . . , vm of I generate the

ideal I, as required.

Corollary 5.38 Let R be an integral domain. Suppose that every non-zero
ideal of R divides some non-zero principal ideal of R. Then R is a Noetherian
domain.

Proof Proposition 5.37 ensures that all ideals of R are finitely generated.

Proposition 5.39 Let R be a Noetherian domain. Suppose that each max-
imal ideal of R divides all ideals contained within it. Then R is a Dedekind
domain.

Proof We show that the localization RP of R at each maximal ideal P
of R is a discrete valuation ring. Let E be a proper ideal of RP and let
I = E ∩ R. Then I ⊂ P and E = IP . The maximal ideal P divides all
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ideals contained within it. It follows from Proposition 5.14 that there exists
a positive integer k and an ideal H of R such that H 6⊂ P and I = P kH.
Then HP = RP , because H contains units of RP . Also the ideal of RP

generated by a product of ideals of R is the product of the corresponding
ideals of RP (Lemma 5.17). Therefore E = IP = P k

PHP = P k
P . Thus every

proper ideal of the local ring RP is of the form P k
P for some positive integer k,

and therefore RP is a discrete valuation ring. The integral domain R is thus
a Noetherian domain whose localization at every maximal ideal is a discrete
valuation ring. It follows from Theorem 5.25 that R is a Dedekind domain,
as required.

Theorem 5.40 An integral domain R is a Dedekind domain if and only if
every ideal of R divides all ideals contained within it.

Proof Suppose that R is a Dedekind domain. It follows from Theorem 5.32
that every non-zero proper ideal of R factors as a product of one or more
maximal ideals of R. It then follows from Proposition 5.34 that every non-
zero proper ideal of R divides some non-zero principal ideal of R. It then
follows from Lemma 5.36 that every ideal of R divides all ideals contained
within it.

Conversely suppose that R is an integral domain and that every ideal of
R divides all ideals contained within it. If I is a non-zero ideal of R, and if s
is a non-zero element of I, then there exists a non-zero ideal L of R such that
IL = (s). It then follows from Proposition 5.37 that the ideal I is finitely
generated. Therefore the integral domain R is a Noetherian domain. Also
every maximal ideal of R divides all ideals contained within it. It follows
from Proposition 5.39 that R is a Dedekind domain, as required.

Corollary 5.41 An integral domain R is a Dedekind domain if and only if
every non-zero ideal of R divides some non-zero principal ideal of R.

Proof The result follows on combining Lemma 5.36 and Theorem 5.40.

Example It follows from the Hilbert Basis Theorem that the ring Q[x, y]
of polynomials in two independent indeterminates x and y with rational
coefficients is a Noetherian domain (see Theorem 3.8 and Corollary 3.10).
The ideal (x, y) generated by polynomials x and y contains the ideal (x)
generated by the polynomial x. But the ideal (x, y) does not divide the ideal
(x). Indeed let L be an ideal of Q[x, y] with the property that (x) ⊂ (x, y)L.
Then there exist polynomials f(x, y) and g(x, y) belonging to the ideal L
such that x = xf(x, y) + yg(x, y). But then g(x, y) = 0 and f(x, y) = 1,
and therefore L = Q[x, y]. Thus there is no ideal L of Q[x, y] for which
(x) = (x, y)L, and therefore the ideal (x, y) does not divide the ideal (x) in
Q[x, y].
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5.9 Discrete Valuations on Dedekind Domains

Let R be a Dedekind domain embedded in its field of fractions K as a subring
of K, and let P be a maximal ideal of R. We regard the localizations RP

of R at each maximal ideal of R as subrings of the field of fractions K of
R. Then R is the intersection of the local domains RP as P ranges over all
maximal ideals of R (Corollary 5.22). The ideal PP of RP generated by the
maximal ideal P of R is the unique maximal ideal of the local domain RP .

Lemma 5.42 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K. Then each maximal ideal P of R determines a
corresponding discrete valuation νP on K which is the unique discrete valu-
ation on K satisfying the following conditions:

(i) νP (r) = 0 for all r ∈ R \ P ;

(ii) νP (r) = k for all elements r of P k \ P k+1.

The valuation ring of the discrete valuation νP is the localization RP of R at
the maximal ideal P of R.

Proof The localization RP of R at each maximal ideal P of R is a discrete
valuation ring, because R is a Dedekind domain (Theorem 5.25). It follows
that RP is the valuation ring of a discrete valuation νP :K → Z ∪ {∞}
on K which maps the multiplicative group K∗ of non-zero elements of K
surjectively onto the group Z of integers under addition. Then νP (r) = 0 for
all r ∈ R \ P , and νP (r) = k for all positive integers k and elements r of
P k \ P k+1.

We now prove that νP is the unique discrete valuation on K satisfying
conditions (i) and (ii). Let ν:K → Z ∪ {∞} be a discrete valuation on K.
Suppose that ν(r) = 0 = νP (r) for all elements r of R \ P , and ν(r) = k =
νP (r) for all positive integers k and elements r of P k \ P k+1. Every element
of R that is not in R \ P belongs to P k \ Rk+1 for some positive integer k.
Therefore ν(r) = νP (r) for all r ∈ R. Every non-zero element of the field of
fractions K of R can be expressed as a quotient of the form rs−1, where r and
s are non-sero elements of R. Then ν(rs−1) = ν(r)− ν(s) = νP (r)− νP (s) =
νP (rs−1). It follows that ν(c) = νP (c) for all c ∈ K, as required.

Definition Let R be a Dedekind domain embedded in its field of fractions K
as a subring of K, and let P be a maximal ideal of R. We define the discrete
valuation νP :K → Z ∪ {∞} determined by the maximal ideal P to be the
unique discrete valuation on K characterized by the following properties:
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(i) νP (r) = 0 for all r ∈ R \ P ;

(ii) νP (r) = k for all elements r of P k \ P k+1.

Proposition 5.43 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K, and, for each each maximal ideal P of R, let
νP :K → Z ∪ {∞} be the discrete valuation on K determined by P . Then

R = {c ∈ K : νP (c) ≥ 0 for all P ∈ Max(R)},

where Max(R) is the set of maximal ideals of R.

Proof It follows from Corollary 5.22 that R =
⋂
P∈Max(R)RP . The result

follows.

Corollary 5.44 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K, and, for each each maximal ideal P of R, let
νP :K → Z ∪ {∞} be the discrete valuation on K determined by P . Let
r and s be non-zero elements of R. Then r divides s in R if and only if
νP (r) ≤ νP (s) for all maximal ideals P of R.

Proof Let r and s be non-zero elements of R. If r divides s in R then there
exists t ∈ R, such that s = rt. It follows that νP (s) = νP (r) + νP (t) ≥ νP (r)
for all maximal ideals P of R. Conversely if νP (s) ≥ νP (r) for all maximal
ideals of R then νP (sr−1) ≥ 0 for all maximal ideals of R. It then follows from
Proposition 5.43 that sr−1 ∈ R, and thus r divides s in R, as required.

Proposition 5.45 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K, and, for each each maximal ideal P of R, let
νP :K → Z ∪ {∞} be the discrete valuation on K determined by P . Let r be
a non-zero element of R. Then there are only finitely many maximal ideals P
of R for which νP (r) 6= 0.

Proof Let r be a non-zero element of R, and let P be a maximal ideal of R.
Then νP (r) 6= 0 if and only if (r) ⊂ P . The result therefore follows directly
from Lemma 5.26.

Let R be a Dedekind domain embedded in its field of fractions K as a
subring of K, and, for each each maximal ideal P of R, let νP :K → Z∪{∞}
be the discrete valuation on K determined by P . Let I be an ideal of R. If
I is the zero ideal of R then we define νP (I) = ∞. If I is a non-zero ideal,
then we define

νP (I) = inf{νP (r) : r 6= 0R and r ∈ I}.
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Then νP (I) is a non-negative integer, and is the minimum value taken on
by νP (r) on the set of non-zero elements of the ideal I. It follows from the
definition of νP (I) that νP (I) ≤ νP (r) for all r ∈ I.

Lemma 5.46 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K, and, for each each maximal ideal P of R, let
νP :K → Z ∪ {∞} be the discrete valuation on K determined by P . Let I
be a non-zero ideal of R. Then νP (I) is non-zero for at most finitely many
maximal ideals P of R.

Proof Let r be a non-zero element of I. Then 0 ≤ νP (I) ≤ νP (r) for all
maximal ideals of R. The result therefore follows from Proposition 5.45.

Proposition 5.47 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K, and, for each each maximal ideal P of R, let
νP :K → Z ∪ {∞} be the discrete valuation on K determined by P . Let I be
an ideal of R. Then

I = {r ∈ R : νP (r) ≥ νP (I) for all P ∈ Max(R)},

where Max(R) denotes the set of maximal ideals of R.

Proof The ideal IP of RP generated by I satisfies

IP ∩R = {r ∈ R : νP (r) ≥ νP (I)}.

Moreover I =
⋂
P∈Max(R) IP (Proposition 5.21). It follows that

I = {r ∈ R : νP (r) ≥ νP (I) for all P ∈ Max(R)},

as required.

Proposition 5.48 Let R be a Dedekind domain embedded in its field of frac-
tions K as a subring of K, and, for each each maximal ideal P of R, let
νP :K → Z ∪ {∞} be the discrete valuation on K determined by P . Let I
and J be non-zero ideals of R. Then νP (IJ) = νP (I)+νP (J) for all maximal
ideals I and J of R.

Proof The localization of R at a maximal ideal P is the valuation ring of
the valuation νP . Moreover the unique maximal ideal of RP is the ideal PP
generated by the maximal ideal P in RP . It follows that

IP = {c ∈ K : νP (c) ≥ νP (I)} = P
νP (I)
P ,

JP = {c ∈ K : νP (c) ≥ νP (J)} = P
νP (J)
P .

But then (IJ)P = IPJP = P
νP (I)+νP (J)
P (see Lemma 5.17). It follows that

νP (IJ) = νP (I) + νP (J), as required.
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5.10 Uniqueness of Ideal Factorization in Dedekind
Domains

Proposition 5.49 Let R be a Dedekind domain, and let P1, P2, . . . , Pk and
Q1, Q2, . . . , Ql be maximal ideals of R. Suppose that

P1P2 · · ·Pk = Q1Q2, · · ·Ql,

Then k = l, and there exists some permutation σ of the set {1, 2, . . . , k} such
that Qi = Pσ(i) for i = 1, 2, . . . , k.

Proof We may assume without loss of generality that l ≥ k. Corollary 5.41
ensures that there exist non-zero ideals L1, L2, . . . , Lk and non-zero elements
b1, b2, . . . , bk of R such that PiLi = bi for i = 1, 2, . . . , k.

The product of the maximal ideals Q1, Q2, . . . , Ql is contained in the max-
imal ideal P1. All maximal ideals are prime ideals (Lemma 2.15). Moreover
if a product of ideals is contained in a prime ideal then at least one of the
factors must be contained in that prime ideal (see Lemma 2.20). It follows
that at least one of the ideals Q1, Q2, . . . , Qs is contained in P1. We may
therefore reorder Q1, Q2, . . . , Qs to ensure that Q1 ⊂ P1. It then follows
from the maximality of Q1 that Q1 = P1.

Suppose that k = 1. Then L1P1 = (b1). If it were the case that l > 1
then the maximal ideals Q2, . . . , Qk would satisfy (b1) = L1P1Q2 · · ·Qk =
b1Q2 · · ·Qk But that would imply that Q2 · · ·Qk = R, which is impossible,
because maximal ideals of R are proper ideals of R. Therefore l = k = 1 and
P1 = Q1 in the case when k = 1.

Now suppose that k > 1. Then

b1P2P3 · · ·Pk = L1P1P2P3 · · ·Pk = L1P1Q2Q3 · · ·Ql = b1Q2Q3 · · ·Ql,

and therefore P2P3 · · ·Pk = Q2Q3 · · ·Ql. Thus if the result holds for ideals
that factor as products of k− 1 maximal ideals, then it must also hold ideals
that factor as products of k maximal ideals. The result therefore follows by
induction on the number of maximal ideals P1, P2, . . . , Pk.

5.11 The Class Group of a Dedekind Domain

Lemma 5.50 Let R be an integral domain, let A be the set of non-zero ideals
of R, and let ∼ be the relation on A defined so that non-zero ideals I and
J of R satisfy I ∼ J if and only if there exist non-zero elements a and b
of R such that aI = bJ . Then ∼ is an equivalence relation on the set A.
Moreover if I, J H and L are non-zero ideals of R, and if I ∼ H and J ∼ L
then IJ ∼ HL.
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Proof The relation ∼ on A is clearly reflexive and symmetric. Let I, J and
L be non-zero ideals of R where I ∼ J and J ∼ L. Then there exist non-zero
elements a, b, c and d of R such that aI = bJ and cJ = dL. Then ac and
bd are non-zero elements of R and acI = bcJ = bdL. It follows that I ∼ L.
Thus the relation ∼ on A is transitive. It is thus an equivalence relation.

Let I, J , H and L be non-zero ideals of R, where I ∼ H and J ∼ L.
Then there exist non-zero elements a, b, c and d of R such that aI = bH and
cJ = dL. Then ac and bd are non-zero elements of R, and acIJ = bdHL. It
follows that IJ ∼ HL, as required.

Given a non-zero ideal I of an integral domain R, we denote by [I] the
equivalence class of I with respect to the relation ∼ on the set A of non-zero
ideals of R defined in the statement of Lemma 5.50. This equivalence class [I]
is referred to as the ideal class of the ideal I. Non-zero ideals I and J of R
thus satisfy [I] = [J ] if and only if there exist non-zero elements a and b of
R such that aI = bJ . It follows from Lemma 5.50. that if I, J , H and L
are non-zero ideals of R, and if [I] = [H] and [J ] = [L] then [IJ ] = [HL].
There is thus a well-defined multiplication operation defined on the set of
ideal classes of an integral domain, where the product [I][J ] of ideal classes
[I] and [J ] is the ideal class [IJ ] of the product ideal IJ .

The ideal classes of an arbitrary integral domain need not constitute a
group with respect to this operation of multiplication of ideal classes. But
the ideal classes of a Dedekind domain do constitute a group.

Proposition 5.51 Let R be a Dedekind domain. Then the set of ideal
classes of non-zero ideals of R is an Abelian group, where multiplication of
ideal classes is defined such that [I][J ] = [IJ ] for all non-zero ideals I and J
of R.

Proof Multiplication of ideals is associative and commutative, and therefore
multiplication of ideal classes is associative and commutative. Also [R][I] =
[RI] = [I] for all non-zero ideals I of R, and therefore the ideal class [R] is
an identity element for multiplication of ideal classes. Corollary 5.41 ensures
that, given any non-zero ideal I of the Dedekind domain R, there exists a
non-zero ideal L for which IL is a principal ideal of R. Then [I][L] = [R].
It follows that every ideal class of R has an inverse with respect to the
operation of multiplication defined on ideal classes of R. Therefore the set of
ideal classes of R is an Abelian group with respect to the specified operation
of multiplication of ideal classes.

Definition Let R be a Dedekind domain. The class group of R is the
Abelian group whose elements are ideal classes of non-zero ideals of R, with
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multiplication of ideal classes defined such that [I][J ] = [IJ ] for all ideals I
and J of R.

Proposition 5.52 An integral domain is a Dedekind domain if and only if
its ideal classes constitute a group with respect to the operation of multipli-
cation defined on ideal classes so that [I][J ] = [IJ ] for all non-zero ideals I
and J of R.

Proof This result follows directly from Corollary 5.41.

Definition Let R be a Dedekind domain whose class group is finite. The
class number of R is the order of the class group of R.

Let R be a Dedekind domain whose class group is finite, and let h be the
class number of R. Then Ih is a principal ideal of R for all non-zero ideals I
of R. This result follows from the basic result of group theory which states
that the order of any element of a finite group divides the order of the group.

5.12 Fractional Ideals

Let R be an integral domain, and let K be its field of fractions. We identify
R with the subring of K that corresponds to it under the natural embedding
of the integral domain R in its field of fractions. Thus R is considered to be
a subring of K.

Definition A fractional ideal of R is a subset of the field K of fractions of
R that is of the form cI, where c is a non-zero element of K and I is an ideal
of R.

A fractional ideal of R is not an ideal of R unless it is contained in R. If
R is not itself a field, then the field K of fractions of K will contain fractional
ideals of R that are not ideals of R. Indeed, given any element c of K \ R,
the subset cR of K is a fractional ideal of K, where cR = {cr : r ∈ R}, but
it is not an ideal of R. However any fractional ideal of R that is contained
in R is an ideal of R.

Definition A principal fractional ideal of an integral domain R is an ideal
of the form cR, where c is an element of the field of fractions of R.

If R is not a field, then the only fractional ideal of R that is an ideal of
K is the zero ideal. When R is itself a field, the only fractional ideals of R
are the zero ideal and the whole of R, and these are ideals of R.
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A fractional ideal of an integral domain R is an R-module, and is isomor-
phic as an R-module to some ideal of R. Indeed, given a fractional ideal M
of R contained in the field of fractions of R, there exists a non-zero element a
of R for which aM ⊂ R. Then aM is an ideal of R, and multiplication by a
provides an isomorphism of R-modules between the fractional ideal M of R
and the ideal aM of R.

Let M and N be fractional ideals of the integral domain R. Then there
exist non-zero elements c and d of K and ideals I and J of R such that
M = cI and N = dJ . We define MN = cdIJ . Then MN consists of those
elements of K that can be expressed in the form

a1b1 + a2b2 + · · ·+ akbk,

where a1, a2, . . . , ak ∈ M and b1, b2, . . . , bk ∈ N . We define the ideal class
[M ] of the fractional ideal M to be the ideal class [I] of the ideal I, where
M = cI. Then [M ][N ] = [MN ] for all fractional ideals M and N of R.

Let I be an non-zero ideal of R. Suppose that there exists a non-zero
ideal L of R for which IL is a principal ideal of R. Then there exists a
non-zero element a of R such that IL = (s). Let M = s−1L. Then M is a
fractional ideal of R, and IM = R. If N is a fractional ideal of R satisfying
IN = R then N = RN = (IM)N = (IN)M = RM = M . Therefore M is
the unique fractional ideal of M for which MI = R. This ideal is referred to
as the inverse of the ideal I, and is denoted by I−1.

Lemma 5.53 Let R be an integral domain, and let I be an non-zero ideal of
R. Then the ideal I divides some non-zero principal ideal of R if and only if
there exists some fractional ideal I−1 of R for which II−1 = R. Moreover if
such a fractional ideal I−1 exists, then it is the unique fractional ideal of R
for which II−1 = R.

The following result follows from Corollary 5.41, and is essentially a re-
statement of that corollary.

Proposition 5.54 An integral domain R is a Dedekind domain if and only if
its non-zero fractional ideals constitute an Abelian group under the operation
of multiplication of fractional ideals.

The class group of a Dedekind domain R is isomorphic to the quotient of
the group G of non-zero fractional ideals of R by the subgroup consisting of
the non-zero principal fractional ideals of R.
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5.13 Characterizations of Dedekind Domains

Proposition 5.55 Let R be an integral domain. Then the following condi-
tions are equivalent, and if the integral domain R satisfies any one of these
conditions, then it satisfies all of them, and is a Dedekind domain:

(i) R is an integrally-closed Noetherian domain in which every non-zero
prime ideal is maximal;

(ii) R is a Noetherian domain, and the localization of R at every maximal
ideal of R is a Dedekind domain;

(iii) R is a Noetherian domain, and the localization of R at every maximal
ideal of R is a principal ideal domain;

(iv) R is a Noetherian domain, and the localization of R at every maximal
ideal of R is a discrete valuation ring;

(v) every non-zero proper ideal of R factors as a product of one or more
maximal ideals;

(vi) given any ideals I and J of R satisfying J ⊂ I, there exists an ideal N
of R such that J = IN ;

(vii) given any non-zero ideal I of R, there exists a non-zero ideal L of R
for which IL is a principal ideal;

(viii) the fractional ideals of R constitute a group with respect to the operation
of multiplication of fractional ideals;

(ix) R is a Noetherian domain, and each maximal ideal of R divides the
ideals contained within it;

(x) R is a Noetherian domain, and, given any maximal ideal P of R, there
exists a non-zero ideal L of R for which PL is a principal ideal of R;

Proof Corollary 5.16 ensures that a local domain is a Dedekind domain if
and only if it is a discrete valuation ring. Proposition 5.7 ensures that a
local domain is a discrete valuation ring if and only if it is a principal ideal
domain. Lemma 5.8 ensures that every principal ideal domain is a Dedekind
domain. It follows that conditions (ii), (iii) and (iv) are equivalent.

Theorem 5.25 ensures that an integral domain R is a Dedekind domain if
and only if R is Noetherian and the localization RP of R at every maximal
ideal P of R is a discrete valuation ring. It follows that (i) is equivalent to
(ii), (iii) and (iv).
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Theorem 5.32 ensures that an integral domain is a Dedekind domain if
and only if every non-zero proper ideal factors as a product of maximal ideals.
It follows that (i) and (v) are equivalent.

Theorem 5.40 ensures that an integral domain R is a Dedekind domain
if and only if every ideal of R divides all ideals contained within it. Also
Lemma 5.36 ensures that a non-zero ideal divides all ideals contained within
it if and only if it divides some non-zero principal ideal. It follows that (i)
and (vi) and (vii) are equivalent.

Condition (viii) is essentially a restatement of (vii), and is therefore equiv-
alent to (i) (Proposition 5.54).

Lemma 5.36 ensures that (ix) and (x) are equivalent to one another. Con-
ditions (i) and (vi) are equivalent and imply (ix). Moreover Proposition 5.39
ensures that condition (ix) implies condition (i). Therefore conditions (i),
(vi), (ix) and (x) are equivalent. Therefore all the conditions listed in the
statement of the proposition are equivalent.
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