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1 Commutative Rings and Polynomials

1.1 Rings

Definition A ring consists of a set R on which are defined operations of
addition and multiplication satisfying the following axioms:

e r+y = y+u for all elements x and y of R (i.e., addition is commutative);

e (x+y)+2z=ux+(y+z) for all elements z, y and z of R (i.e., addition
is associative);

e there exists an an element Or of R (known as the zero element of the
ring R) with the property that x + 0r = x for all elements = of R;

e given any element x of R, there exists an element —x of R with the
property that @ + (—z) = Og;

e z(yz) = (xy)z for all elements z, y and z of R (i.e., multiplication is
associative);

e z(y+z2)=xy+axzand (z+y)z = xz + yz for all elements z, y and z
of R (the Distributive Law).

Lemma 1.1 Let R be a ring. Then x0r = Ogr and Ogx = Og for all ele-
ments x of R.

Proof The zero element Og of the ring R satisfies Og + 0g = Og. It follows
from the Distributive Law that

20r + 20r = 2(0g + 0r) = 20x.

On adding —(z0g) to both sides of this identity we see that z0r = 0g. Also
Orx 4+ Ogz = (0 + Or)z = Ogx,

and therefore Ogx = 0g. |}

Lemma 1.2 Let R be a ring. Then (—x)y = —(zy) and x(—y) = —(zy) for
all elements x and y of R.

Proof It follows from the Distributive Law that
zy+ (—x)y = (x + (—z))y = Ogy = Og

and
vy +a(=y) = 2(y + (—y)) = 20r = Og.
Therefore (—z)y = —(xy) and z(—y) = —(zy). |
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Definition A subset S of a ring R is said to be a subring of R if Og € S,
a+beS, —ae Sandabe Sforall a,beS.

Definition A ring R is said to be commutative if xy = yx for all z,y € R.

Definition A ring R is said to be unital if it possesses a non-zero multi-
plicative identity element 1z with the property that 1zgx = x = x1pi for all
x € R.

Example Let n be a positive integer. Then the set of all n x n matrices
with real coefficients, with the usual operations of matrix addition and matrix
multiplication, is a ring. This ring is a unital ring: the multiplicative identity
element is the identity n x n matrix. The ring of n X n matrices with real
coefficients is a non-commutative ring when n > 1.

1.2 Integral Domains and Fields

Definition A unital commutative ring R is said to be an integral domain if
the product of any two non-zero elements of R is itself non-zero.

Definition A field consists of a set K on which are defined operations of
addition and multiplication satisfying the following axioms:

e r+y = y+u for all elements x and y of K (i.e., addition is commutative);

e (x+y)+2z=ux+ (y+2) for all elements z, y and z of K (i.e., addition
is associative);

e there exists an an element Ok of K (known as the zero element of the
field K) with the property that = + O = « for all elements z of K;

e given any element x of K, there exists an element —x of K with the
property that x 4+ (—z) = Ok;

e xy = yx for all elements x and y of K (i.e., multiplication is commuta-
tive);
e x(yz) = (zy)z for all elements z, y and z of K (i.e., multiplication is

associative);

e there exists a non-zero element 1x of K (the multiplicative identity
element of K) with the property that 15z = x for all elements = of K;

e given any non-zero element x of K, there exists an element 7! of K

with the property that zz=! = 1x;



e z(y+z)=xy+axzand (z+y)z = xz + yz for all elements z, y and z
of K (the Distributive Law).

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element 27! of R such that z2=! = 1z. Moreover a ring R is a
field if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

Lemma 1.3 A field is an integral domain.

Proof A field is a unital commutative ring. Let x and y be non-zero elements
of a field K. Then there exist elements 7! and y~! of K such that zz=! = 1,
and yy~! = 1. Then zyy 'oz=! = 1x. Now if it were the case that xy = Ok
then it would follow that

lg = (2y)(y~'2z™") = Ox(y'27") = O

(see Lemma 1.1). But the definition of a field requires that 1x # 0. We
conclude therefore that zy must be a non-zero element of the field K. |}

The set Z of integers is an integral domain with respect to the usual
operations of addition and multiplication. But Z is not a field. The sets
Q, R and C of rational, real and complex numbers are fields, and are thus
integral domains.

1.3 Ideals

Definition Let R be a ring, and let Or denote the zero element of R. A
subset [ of R is said to be an ideal of RifOgp € [,a+bel, —a€l, racl
and ar € [ for all a,b € I and r € R.

Definition An ideal I of R is said to be a proper ideal of R if I # R.

Note that an ideal I of a unital ring R is proper if and only if 1z ¢ I,
where 1z denotes the multiplicative identity element of the ring R. Indeed
if 1g € I then r € I for all r € R, since r = rlg.

Lemma 1.4 A unital commutative ring R is a field if and only if the only
ideals of R are the zero ideal {Or} and the ring R itself.



Proof Suppose that R is a field. Let I be a non-zero ideal of R. Then there
exists z € I satisfying x # 0. Moreover there exists x7! € R satisfying
xa~! = 1p = v~ 'a. Therefore 1z € I, and hence I = R. Thus the only
ideals of R are {Og} and R.

Conversely, suppose that R is a unital commutative ring with the property
that the only ideals of R are {Or} and R. Let x be a non-zero element of
R, and let Rz denote the subset of R consisting of all elements of R that
are of the form rx for some r € R. It is easy to verify that Rx is an ideal
of R. (In order to show that yr € Rx for all y € Rz and r € R, one must
use the fact that the ring R is commutative.) Moreover Rx # {Og}, since
x € Rx. We deduce that Rx = R. Therefore 1z € Rz, and hence there
exists some element 27! of R satisfying 27!z = 1. This shows that R is a
field, as required. |}

The intersection of any collection of ideals of a ring R is itself an ideal
of R. For if a and b are elements of R that belong to all the ideals in the
collection, then the same is true of Og, a + b, —a, ra and ar for all r € R.

Definition Let X be a subset of the ring R. The ideal of R generated by X
is defined to be the intersection of all the ideals of R that contain the set X.
Note that this ideal is well-defined and is the smallest ideal of R containing
the set X (i.e., it is contained in every other ideal that contains the set X).

Any finite subset { f1, fa, ..., fr} of aring R generates an ideal of R which
we denote by (f1, fo, ..., fx).

Definition An ideal I of the ring R is said to be finitely generated if there
exists a finite subset of R which generates the ideal I.

Lemma 1.5 Let R be a unital commutative ring, and let X be a subset of
R. Then the ideal generated by X coincides with the set of all elements of R
that can be expressed as a finite sum of the form

TT1 + TeZo + - -+ T Ty,
where x1,%o,..., 2 € X and ri,19,...,71 € R.

Proof Let I be the subset of R consisting of all these finite sums. If J is any
ideal of R which contains the set X then J must contain each of these finite
sums, and thus I C J. Let a and b be elements of I. It follows immediately
from the definition of I that Og € I, a+b € I, —a € I, and ra € [ for all
r € R. Also ar = ra, since R is commutative, and thus ar € I. Thus [ is an
ideal of R. Moreover X C I, since the ring R is unital and x = 1zz for all
x € X (where 1 denotes the multiplicative identity element of the ring R).
Thus [ is the smallest ideal of R containing the set X, as required. |}
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Each integer n generates an ideal nZ of the ring Z of integers. This ideal
consists of those integers that are divisible by n.

Theorem 1.6 Fvery ideal of the ring Z. of integers is generated by some
non-negative integer n.

Proof The zero ideal is of the required form with n = 0. Let [ be some
non-zero ideal of Z. Then I contains at least one strictly positive integer
(since —m € I for all m € I). Let n be the smallest strictly positive integer
belonging to I. If j € I then we can write j = gn + r for some integers g
and r with 0 < r <n. Nowr € I, sincer = j—qn, j € I and gn € I.
But 0 < r < n, and n is by definition the smallest strictly positive integer
belonging to I. We conclude therefore that » = 0, and thus j = ¢qn. This
shows that I = nZ, as required. |}

1.4 Quotient Rings and Homomorphisms

Definition Let R be a ring and let I be an ideal of R. The cosets of I in R
are the subsets of R that are of the form [ + x for some x € R, where

I+z={a+z:a€l}.
We denote by R/I the set of cosets of I in R.

Let z and 2’ be elements of R. Then [+x = I+’ ifand only if z—2’ € I.
Indeed if I + 2 = I +a’, then x = ¢+ 2’ for some ¢ € I. But then z — 2’ = ¢,
and thus x — 2’ € I. Conversely if x — 2’ € I then x — 2’ = ¢ for some ¢ € I.
But then

I+e={a+z:ac€l}={a+c+a2' :acl}={b+2":bel}=1+2"
If , 2/, y and 3/ are elements of R satisfying
I+x=1+2" and IT+y=I1+y
then
(@+y)— @' +y) = @-2)+W—y),
vy —ay = wy—ay +ay -2y =aly—y)+(@-2)y

But z — 2’ € I and y — ¢ € I, and therefore z(y —¢') € [ and (x —2')y’ € I,
because [ is an ideal. It follows that (zx+y) — (2’ +¢') € [ and xzy — 2"y’ € I,
and therefore

I+rz+y=I+2"+y and I+ay=1+2"y.



This shows that the quotient group R/I admits well-defined operations of
addition and multiplication, defined such that

I+z)+(U+y)=I+z+y and ([+2)I+y) =1+uzy

for all z,y € R. One can readily verify that R/I is a ring with respect to
these operations.

Definition Let R be a ring, and let I be an ideal of R. The quotient ring
R/I corresponding to the ideal I of R is the set of cosets of I in R, where
the operations of addition and multiplication of cosets are defined such that

{+z)+({+y)=I4+2x+y and ([+2){+y)=1+uzy
for all z,y € R.

Example Let n be an integer satisfying n > 1. The quotient Z/nZ of the
ring Z of integers by the ideal nZ generated by n is the ring of congruence
classes of integers modulo n. This ring has n elements, and is a field if and
only if n is a prime number.

Definition A function p: R — S from a ring R to a ring S is said to be a
homomorphism (or ring homomorphism) if and only if

or+y)=p()+ey) and @(ry) = w(x)p(y)

for all x,y € R. If in addition the rings R and S are unital then a homomor-
phism ¢: R — S is said to be wunital if ¢(1z) = 1g, where 1z and 1g denote
the multiplicative identity elements of the rings R and S respectively.

Let R and S be rings with zero elements Oz and Og respectively, and let
¢: R — S be a homomorphism from R to S. Let x € R. Then

p(2) = ¢z +0r) = () + (Or)-
It follows that ¢(0g) = 0g. Also
p(2) + o(=2) = p(z + (=2)) = ¢(0r) = Os,
and therefore p(—z) = —¢(z).

Definition Let R and S be rings, and let ¢: R — S be a ring homomor-
phism. The kernel ker ¢ of the homomorphism ¢ is the ideal of R defined
such that

kero ={z € R: ¢(x) =0g}.



The image ¢(R) of the homomorphism is a subring of S; however it is
not in general an ideal of S.

An ideal I of a ring R is the kernel of the quotient homomorphism that
sends x € R to the coset I + x.

Definition An isomorphism ¢: R — S between rings R and S is a ho-
momorphism that is also a bijection between R and S. The inverse of an
isomorphism is itself an isomorphism. Two rings are said to be isomorphic
if there is an isomorphism between them.

Proposition 1.7 Let R and S be rings, and let p: R — S be a homomor-
phism from R to S. Then p(R) = R/ker , where ker ¢ denotes the kernel
of the homomorphism .

Proof Let x and y be elements of R, let Oz and Og denote the zero elements
of R and S respectively, and let I = ker ¢. Then

or) =p(y) <= @) —ply) =05 <= p(x—y) =05
— zrv—yecl <<= I+tz=1+y.

It follows that there is a well-defined bijection @: R/I — ¢(R) defined such
that @(1 + x) = p(z) for all x € R. Moreover

P(I+2)+ I +y)=¢U +z+y) =e(x+y) = pl)+ey)
and
P+ ) +y)) = oI +xy) = p(ry) = p(r)e(y)
for all z,y € R. It follows that ¢: R/I — ¢(R) is an isomorphism, as
required. |

1.5 The Characteristic of a Ring

Let R be a ring, and let r € R. We may define n.r for all natural numbers n
by recursion on n so that 1.r = r and n.r = (n —1).r +r for all n > 0. We

define also 0.r = Og and (—n).r = —(n.r) for all natural numbers n. Then
(m+n).r=mor+n.r, n.(r+s) =n.r+n.s,
(mn).r =m.(n.r), (m.r)(n.s) = (mn).(rs)

for all integers m an n and for all elements r and s of R.

In particular, suppose that R is a unital ring. Then the set of all integers n
satisfying n.1g = Og is an ideal of Z. Therefore there exists a unique non-
negative integer p such that pZ = {n € Z : n.1r = Og} (see Theorem 1.6).
This integer p is referred to as the characteristic of the ring R, and is denoted

by char R.



Lemma 1.8 Let R be an integral domain. Then either char R = 0 or else
char R is a prime number.

Proof Let p = char R. Clearly p # 1. Suppose that p > 1 and p = jk, where
j and k are positive integers. Then (j.1g)(k.1g) = (jk).1g = p.1g = 0x. But
R is an integral domain. Therefore either j.1z = Og, or k.1g = Or. But if
Jj.-1r = Og then p divides j and therefore j = p. Similarly if k.13 = Og then
k = p. It follows that p is a prime number, as required. |

1.6 Polynomial Rings

Let R be a unital commutative ring, let Or denote the zero element of R,
and let R[z] denote the set of all polynomials of the form

ao + a1z + asx® + - - - + apz”

where the coefficients ag, . .., a, all belong to the ring R.
Each polynomial f(x) with coefficients in the ring R determines and is
determined by an infinite sequence

Qp, a1, a2, a3, a4, . - .,

of elements of the ring I, where a; € R for all non-negative integers j and
a; # Og for at most finitely many values of j. The members of this infinite
sequence are the coefficients of the polynomial f(x). Given any polynomial
f(z) with coefficients ag, a1, as, . . ., there exists some non-negative integer n
such that a; = 0g when j > n. The polynomial f(z) is then represented by
the expression

f(z) = ao + a1 + agx® + - - - + a,z".

The polynomial f(x) is said to be non-zero if a; # Og for at least one
non-negative integer j. If the polynomial f(z) is non-zero then there will be
a well-defined non-negative integer d which is equal to the largest integer j
for which a; # Og. This non-negative integer d is the degree of the non-zero
polynomial f(z). A non-zero polynomial f(z) of degree d with coefficients
in the ring R is then uniquely representable in the form

f(@) = ap + a1 + asa® + - - + aqga’,

where ag, aq,...,aq € R and ag # 0g. The coefficient a4 of f of degree d is
referred to as the leading coefficient of the polynomial f.



Definition A non-zero polynomial f(x) of degree d with coefficients in a
unital commutative ring R is said to be monic if ay = 1g, where 1x de-
notes the multiplicative identity element of the ring R, in which case the
polynomial f can be represented in the form

f($) =ag+ a1 —|—a2$2 4. +ad_1xd—1 +:L’d.
where ag, ay,...,a4-1 € R.

There are operations of addition and multiplication, defined on the set
R]z] of polynomials with coefficients in a unital commutative ring R. These
operations are defined so as to generalize the standard operations of addition
and multiplication defined on the set of polynomials with complex coeffi-
cients. Thus if

flz) = Z bpa™ = by + by 4 boa® + -+ by 2™+ ba”

n=0
s

g(x) = Z Cnx™ = co + 1T + o’ - F 2™+ ot

n=0
then

f@)+9(@) =D gaa™ = go+ g1 + g2z + -+ + g1z’ + gaz?,
n=0

where d = max(r, s) and

bj +c¢; if 0<j <min(r,s);

gi=1< b; ifs<j<mr;
c; ifr<j<s.
Also
f(x)g(z) = Z Z bj0k$j+k
=0 k=0
= boCo + (boCl —+ b100)$ + (bQCQ + b101 -+ b200)$2 -+ ..
+ (br—lcs + brcs—l)xr+s_1 + brcsxr+8a
and thus
r4+s
f@)g(z) = an",
n=0



where
min(r,n)

ay = E bj Cn—j

j=max(0,n—s)

for n = 0,1,2,...,r + s. The operations of addition and multiplication
of polynomials defined in this fashion satisfy the usual Commutative, As-
sociative and Distributive Laws. Each element r of the coefficient ring R
determines a corresponding polynomial of degree zero with coefficients are
given by the infinite sequence r,0g, Og, Og, Og, . .., where O denotes the zero
element of the ring R. This polynomial is the constant polynomial in R[z]
with coefficient r. It is customary to use the same symbol to represent both
the element r of the coefficient ring R and also the corresponding constant
polynomial.

In particular, the zero element O and the multiplicative identity ele-
ment 1 of the coefficient ring R determine corresponding constant poly-
nomials, also denoted by 0r and 1g. Moreover f(z) + 0g = f(x) and
f(z)1g = f(x) for all polynomials f with coefficients in the ring R. Also
each polynomial f(z) with coefficients in R determines a corresponding poly-
nomial — f(x) with the property that f(z) + (—f(z)) = Og: if

f(x) =aqag+ a1r + 1;21‘2 4+ .+ am_lxm—l + amxm
then
_f<x) = (_CLO) + (—Gl)iﬂ -+ (_a2)$2 I (_am71>$m71 + (—am)xm

The results described above ensure that the set R[z]| of polynomials with
coefficients in the ring R, with the operations of addition and multiplication
of polynomials defined as described above, is itself a unital commutative
ring. Moreover there is a standard embedding of the coefficient ring R into
the polynomial ring R[z]: the coefficient ring R is naturally isomorphic to
the subring of R[z] whose elements are constant polynomials, and we can
therefore identity each element of the coefficient ring R with the constant
polynomial that it determines.

Lemma 1.9 Let K be a field, and let f € K[z] be a non-zero polynomial
with coefficients in K. Then, given any polynomial h € K[x], there exist
unique polynomials q and r in K[x] such that h = fq+ r and either r = 0
or else degr < deg f.

Proof If degh < deg f then we may take ¢ = 0 and r = h. In general we
prove the existence of ¢ and r by induction on the degree degh of h. Thus
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suppose that deg h > deg f and that any polynomial of degree less than deg h
can be expressed in the required form. Now there is some element ¢ of K
for which the polynomials h(z) and cf(z) have the same leading coefficient.
Let hy(z) = h(z) — cx™ f(x), where m = degh — deg f. Then either h; =0
or degh; < degh. The inductive hypothesis then ensures the existence
of polynomials ¢; and r such that h; = fq; + r and either » = 0 or else
degr < deg f. But then h = fq + r, where ¢(z) = cz™ + q1(z). We now
verify the uniqueness of ¢ and r. Suppose that fq +r = fq+ 7, where
q,7 € K|x] and either 7 = 0 or degT < deg f. Then (¢ —q)f =r —7. But
deg((q — q)f) > deg f whenever ¢ # g, and deg(r — 7) < deg f whenever
r # 7. Therefore the equality (¢ —q)f = r — T cannot hold unless ¢ = g and
r = 7. This proves the uniqueness of ¢ and r. |}

Any polynomial f with coefficients in a field K generates an ideal (f)
of the polynomial ring K[x] consisting of all polynomials in K[x] that are

divisible by f.

Lemma 1.10 Let K be a field, and let I be an ideal of the polynomial ring
K[z]. Then there exists f € K[x] such that I = (f), where (f) denotes the
ideal of K[x] generated by f.

Proof If I = {0} then we can take f = 0. Otherwise choose f € I such
that f # 0 and the degree of f does not exceed the degree of any non-zero
polynomial in /. Then, for each h € I, there exist polynomials ¢ and r in K[z]
such that h = fq + r and either r = 0 or else degr < deg f. (Lemma 1.9).
But r € I, since r = h — fq and h and f both belong to I. The choice of f
then ensures that r =0 and h = gf. Thus I = (f). |}

11



