Module MA3412: Integral Domains, Modules and Algebraic Integers Section 1 Hilary Term 2014

D. R. Wilkins

Copyright © David R. Wilkins 1997-2014

Contents

1 Commutative Rings and Polynomials 1
1.1 Rings 1
1.2 Integral Domains and Fields 2
1.3 Ideals 3
1.4 Quotient Rings and Homomorphisms 5
1.5 The Characteristic of a Ring 7
1.6 Polynomial Rings 8

1 Commutative Rings and Polynomials

1.1 Rings

Definition A ring consists of a set R on which are defined operations of addition and multiplication satisfying the following axioms:

- $x+y=y+x$ for all elements x and y of R (i.e., addition is commutative);
- $(x+y)+z=x+(y+z)$ for all elements x, y and z of R (i.e., addition is associative);
- there exists an an element 0_{R} of R (known as the zero element of the ring R) with the property that $x+0_{R}=x$ for all elements x of R;
- given any element x of R, there exists an element $-x$ of R with the property that $x+(-x)=0_{R}$;
- $x(y z)=(x y) z$ for all elements x, y and z of R (i.e., multiplication is associative);
- $x(y+z)=x y+x z$ and $(x+y) z=x z+y z$ for all elements x, y and z of R (the Distributive Law).

Lemma 1.1 Let R be a ring. Then $x 0_{R}=0_{R}$ and $0_{R} x=0_{R}$ for all elements x of R.

Proof The zero element 0_{R} of the ring R satisfies $0_{R}+0_{R}=0_{R}$. It follows from the Distributive Law that

$$
x 0_{R}+x 0_{R}=x\left(0_{R}+0_{R}\right)=x 0_{R} .
$$

On adding $-\left(x 0_{R}\right)$ to both sides of this identity we see that $x 0_{R}=0_{R}$. Also

$$
0_{R} x+0_{R} x=\left(0_{R}+0_{R}\right) x=0_{R} x
$$

and therefore $0_{R} x=0_{R}$.
Lemma 1.2 Let R be a ring. Then $(-x) y=-(x y)$ and $x(-y)=-(x y)$ for all elements x and y of R.

Proof It follows from the Distributive Law that

$$
x y+(-x) y=(x+(-x)) y=0_{R} y=0_{R}
$$

and

$$
x y+x(-y)=x(y+(-y))=x 0_{R}=0_{R} .
$$

Therefore $(-x) y=-(x y)$ and $x(-y)=-(x y)$.

Definition A subset S of a ring R is said to be a subring of R if $0_{R} \in S$, $a+b \in S,-a \in S$ and $a b \in S$ for all $a, b \in S$.

Definition A ring R is said to be commutative if $x y=y x$ for all $x, y \in R$.
Definition A ring R is said to be unital if it possesses a non-zero multiplicative identity element 1_{R} with the property that $1_{R} x=x=x 1_{R}$ for all $x \in R$.

Example Let n be a positive integer. Then the set of all $n \times n$ matrices with real coefficients, with the usual operations of matrix addition and matrix multiplication, is a ring. This ring is a unital ring: the multiplicative identity element is the identity $n \times n$ matrix. The ring of $n \times n$ matrices with real coefficients is a non-commutative ring when $n>1$.

1.2 Integral Domains and Fields

Definition A unital commutative ring R is said to be an integral domain if the product of any two non-zero elements of R is itself non-zero.

Definition A field consists of a set K on which are defined operations of addition and multiplication satisfying the following axioms:

- $x+y=y+x$ for all elements x and y of K (i.e., addition is commutative);
- $(x+y)+z=x+(y+z)$ for all elements x, y and z of K (i.e., addition is associative);
- there exists an an element 0_{K} of K (known as the zero element of the field K) with the property that $x+0_{K}=x$ for all elements x of K;
- given any element x of K, there exists an element $-x$ of K with the property that $x+(-x)=0_{K}$;
- $x y=y x$ for all elements x and y of K (i.e., multiplication is commutative);
- $x(y z)=(x y) z$ for all elements x, y and z of K (i.e., multiplication is associative);
- there exists a non-zero element 1_{K} of K (the multiplicative identity element of K) with the property that $1_{K} x=x$ for all elements x of K;
- given any non-zero element x of K, there exists an element x^{-1} of K with the property that $x x^{-1}=1_{K}$;
- $x(y+z)=x y+x z$ and $(x+y) z=x z+y z$ for all elements x, y and z of K (the Distributive Law).

An examination of the relevant definitions shows that a unital commutative ring R is a field if and only if, given any non-zero element x of R, there exists an element x^{-1} of R such that $x x^{-1}=1_{R}$. Moreover a ring R is a field if and only if the set of non-zero elements of R is an Abelian group with respect to the operation of multiplication.

Lemma 1.3 A field is an integral domain.
Proof A field is a unital commutative ring. Let x and y be non-zero elements of a field K. Then there exist elements x^{-1} and y^{-1} of K such that $x x^{-1}=1_{K}$ and $y y^{-1}=1_{K}$. Then $x y y^{-1} x^{-1}=1_{K}$. Now if it were the case that $x y=0_{K}$ then it would follow that

$$
1_{K}=(x y)\left(y^{-1} x^{-1}\right)=0_{K}\left(y^{-1} x^{-1}\right)=0_{K}
$$

(see Lemma 1.1). But the definition of a field requires that $1_{K} \neq 0_{K}$. We conclude therefore that $x y$ must be a non-zero element of the field K.

The set \mathbb{Z} of integers is an integral domain with respect to the usual operations of addition and multiplication. But \mathbb{Z} is not a field. The sets \mathbb{Q}, \mathbb{R} and \mathbb{C} of rational, real and complex numbers are fields, and are thus integral domains.

1.3 Ideals

Definition Let R be a ring, and let 0_{R} denote the zero element of R. A subset I of R is said to be an ideal of R if $0_{R} \in I, a+b \in I,-a \in I, r a \in I$ and $a r \in I$ for all $a, b \in I$ and $r \in R$.

Definition An ideal I of R is said to be a proper ideal of R if $I \neq R$.
Note that an ideal I of a unital ring R is proper if and only if $1_{R} \notin I$, where 1_{R} denotes the multiplicative identity element of the ring R. Indeed if $1_{R} \in I$ then $r \in I$ for all $r \in R$, since $r=r 1_{R}$.

Lemma 1.4 A unital commutative ring R is a field if and only if the only ideals of R are the zero ideal $\left\{0_{R}\right\}$ and the ring R itself.

Proof Suppose that R is a field. Let I be a non-zero ideal of R. Then there exists $x \in I$ satisfying $x \neq 0_{R}$. Moreover there exists $x^{-1} \in R$ satisfying $x x^{-1}=1_{R}=x^{-1} x$. Therefore $1_{R} \in I$, and hence $I=R$. Thus the only ideals of R are $\left\{0_{R}\right\}$ and R.

Conversely, suppose that R is a unital commutative ring with the property that the only ideals of R are $\left\{0_{R}\right\}$ and R. Let x be a non-zero element of R, and let $R x$ denote the subset of R consisting of all elements of R that are of the form $r x$ for some $r \in R$. It is easy to verify that $R x$ is an ideal of R. (In order to show that $y r \in R x$ for all $y \in R x$ and $r \in R$, one must use the fact that the ring R is commutative.) Moreover $R x \neq\left\{0_{R}\right\}$, since $x \in R x$. We deduce that $R x=R$. Therefore $1_{R} \in R x$, and hence there exists some element x^{-1} of R satisfying $x^{-1} x=1_{R}$. This shows that R is a field, as required.

The intersection of any collection of ideals of a ring R is itself an ideal of R. For if a and b are elements of R that belong to all the ideals in the collection, then the same is true of $0_{R}, a+b,-a, r a$ and $a r$ for all $r \in R$.

Definition Let X be a subset of the ring R. The ideal of R generated by X is defined to be the intersection of all the ideals of R that contain the set X. Note that this ideal is well-defined and is the smallest ideal of R containing the set X (i.e., it is contained in every other ideal that contains the set X).

Any finite subset $\left\{f_{1}, f_{2}, \ldots, f_{k}\right\}$ of a ring R generates an ideal of R which we denote by $\left(f_{1}, f_{2}, \ldots, f_{k}\right)$.

Definition An ideal I of the ring R is said to be finitely generated if there exists a finite subset of R which generates the ideal I.

Lemma 1.5 Let R be a unital commutative ring, and let X be a subset of R. Then the ideal generated by X coincides with the set of all elements of R that can be expressed as a finite sum of the form

$$
r_{1} x_{1}+r_{2} x_{2}+\cdots+r_{k} x_{k}
$$

where $x_{1}, x_{2}, \ldots, x_{k} \in X$ and $r_{1}, r_{2}, \ldots, r_{k} \in R$.
Proof Let I be the subset of R consisting of all these finite sums. If J is any ideal of R which contains the set X then J must contain each of these finite sums, and thus $I \subset J$. Let a and b be elements of I. It follows immediately from the definition of I that $0_{R} \in I, a+b \in I,-a \in I$, and $r a \in I$ for all $r \in R$. Also $a r=r a$, since R is commutative, and thus $a r \in I$. Thus I is an ideal of R. Moreover $X \subset I$, since the ring R is unital and $x=1_{R} x$ for all $x \in X$ (where 1_{R} denotes the multiplicative identity element of the ring R). Thus I is the smallest ideal of R containing the set X, as required.

Each integer n generates an ideal $n \mathbb{Z}$ of the ring \mathbb{Z} of integers. This ideal consists of those integers that are divisible by n.

Theorem 1.6 Every ideal of the ring \mathbb{Z} of integers is generated by some non-negative integer n.

Proof The zero ideal is of the required form with $n=0$. Let I be some non-zero ideal of \mathbb{Z}. Then I contains at least one strictly positive integer (since $-m \in I$ for all $m \in I$). Let n be the smallest strictly positive integer belonging to I. If $j \in I$ then we can write $j=q n+r$ for some integers q and r with $0 \leq r<n$. Now $r \in I$, since $r=j-q n, j \in I$ and $q n \in I$. But $0 \leq r<n$, and n is by definition the smallest strictly positive integer belonging to I. We conclude therefore that $r=0$, and thus $j=q n$. This shows that $I=n \mathbb{Z}$, as required.

1.4 Quotient Rings and Homomorphisms

Definition Let R be a ring and let I be an ideal of R. The cosets of I in R are the subsets of R that are of the form $I+x$ for some $x \in R$, where

$$
I+x=\{a+x: a \in I\} .
$$

We denote by R / I the set of cosets of I in R.
Let x and x^{\prime} be elements of R. Then $I+x=I+x^{\prime}$ if and only if $x-x^{\prime} \in I$. Indeed if $I+x=I+x^{\prime}$, then $x=c+x^{\prime}$ for some $c \in I$. But then $x-x^{\prime}=c$, and thus $x-x^{\prime} \in I$. Conversely if $x-x^{\prime} \in I$ then $x-x^{\prime}=c$ for some $c \in I$. But then

$$
I+x=\{a+x: a \in I\}=\left\{a+c+x^{\prime}: a \in I\right\}=\left\{b+x^{\prime}: b \in I\right\}=I+x^{\prime}
$$

If x, x^{\prime}, y and y^{\prime} are elements of R satisfying

$$
I+x=I+x^{\prime} \quad \text { and } \quad I+y=I+y^{\prime}
$$

then

$$
\begin{aligned}
(x+y)-\left(x^{\prime}+y^{\prime}\right) & =\left(x-x^{\prime}\right)+\left(y-y^{\prime}\right), \\
x y-x^{\prime} y^{\prime} & =x y-x y^{\prime}+x y^{\prime}-x^{\prime} y^{\prime}=x\left(y-y^{\prime}\right)+\left(x-x^{\prime}\right) y^{\prime} .
\end{aligned}
$$

But $x-x^{\prime} \in I$ and $y-y^{\prime} \in I$, and therefore $x\left(y-y^{\prime}\right) \in I$ and $\left(x-x^{\prime}\right) y^{\prime} \in I$, because I is an ideal. It follows that $(x+y)-\left(x^{\prime}+y^{\prime}\right) \in I$ and $x y-x^{\prime} y^{\prime} \in I$, and therefore

$$
I+x+y=I+x^{\prime}+y^{\prime} \quad \text { and } \quad I+x y=I+x^{\prime} y^{\prime} .
$$

This shows that the quotient group R / I admits well-defined operations of addition and multiplication, defined such that

$$
(I+x)+(I+y)=I+x+y \quad \text { and } \quad(I+x)(I+y)=I+x y
$$

for all $x, y \in R$. One can readily verify that R / I is a ring with respect to these operations.

Definition Let R be a ring, and let I be an ideal of R. The quotient ring R / I corresponding to the ideal I of R is the set of cosets of I in R, where the operations of addition and multiplication of cosets are defined such that

$$
(I+x)+(I+y)=I+x+y \quad \text { and } \quad(I+x)(I+y)=I+x y
$$

for all $x, y \in R$.
Example Let n be an integer satisfying $n>1$. The quotient $\mathbb{Z} / n \mathbb{Z}$ of the ring \mathbb{Z} of integers by the ideal $n \mathbb{Z}$ generated by n is the ring of congruence classes of integers modulo n. This ring has n elements, and is a field if and only if n is a prime number.

Definition A function $\varphi: R \rightarrow S$ from a ring R to a ring S is said to be a homomorphism (or ring homomorphism) if and only if

$$
\varphi(x+y)=\varphi(x)+\varphi(y) \quad \text { and } \quad \varphi(x y)=\varphi(x) \varphi(y)
$$

for all $x, y \in R$. If in addition the rings R and S are unital then a homomorphism $\varphi: R \rightarrow S$ is said to be unital if $\varphi\left(1_{R}\right)=1_{S}$, where 1_{R} and 1_{S} denote the multiplicative identity elements of the rings R and S respectively.

Let R and S be rings with zero elements 0_{R} and 0_{S} respectively, and let $\varphi: R \rightarrow S$ be a homomorphism from R to S. Let $x \in R$. Then

$$
\varphi(x)=\varphi\left(x+0_{R}\right)=\varphi(x)+\varphi\left(0_{R}\right)
$$

It follows that $\varphi\left(0_{R}\right)=0_{S}$. Also

$$
\varphi(x)+\varphi(-x)=\varphi(x+(-x))=\varphi\left(0_{R}\right)=0_{S},
$$

and therefore $\varphi(-x)=-\varphi(x)$.
Definition Let R and S be rings, and let $\varphi: R \rightarrow S$ be a ring homomorphism. The kernel $\operatorname{ker} \varphi$ of the homomorphism φ is the ideal of R defined such that

$$
\operatorname{ker} \varphi=\left\{x \in R: \varphi(x)=0_{S}\right\}
$$

The image $\varphi(R)$ of the homomorphism is a subring of S; however it is not in general an ideal of S.

An ideal I of a ring R is the kernel of the quotient homomorphism that sends $x \in R$ to the coset $I+x$.

Definition An isomorphism $\varphi: R \rightarrow S$ between rings R and S is a homomorphism that is also a bijection between R and S. The inverse of an isomorphism is itself an isomorphism. Two rings are said to be isomorphic if there is an isomorphism between them.

Proposition 1.7 Let R and S be rings, and let $\varphi: R \rightarrow S$ be a homomorphism from R to S. Then $\varphi(R) \cong R / \operatorname{ker} \varphi$, where $\operatorname{ker} \varphi$ denotes the kernel of the homomorphism φ.

Proof Let x and y be elements of R, let 0_{R} and 0_{S} denote the zero elements of R and S respectively, and let $I=\operatorname{ker} \varphi$. Then

$$
\begin{aligned}
\varphi(x)=\varphi(y) & \Longleftrightarrow \varphi(x)-\varphi(y)=0_{S} \Longleftrightarrow \varphi(x-y)=0_{S} \\
& \Longleftrightarrow x-y \in I \Longleftrightarrow I+x=I+y .
\end{aligned}
$$

It follows that there is a well-defined bijection $\tilde{\varphi}: R / I \rightarrow \varphi(R)$ defined such that $\tilde{\varphi}(I+x)=\varphi(x)$ for all $x \in R$. Moreover

$$
\tilde{\varphi}((I+x)+(I+y))=\tilde{\varphi}(I+x+y)=\varphi(x+y)=\varphi(x)+\varphi(y)
$$

and

$$
\tilde{\varphi}((I+x)(I+y))=\tilde{\varphi}(I+x y)=\varphi(x y)=\varphi(x) \varphi(y)
$$

for all $x, y \in R$. It follows that $\tilde{\varphi}: R / I \rightarrow \varphi(R)$ is an isomorphism, as required.

1.5 The Characteristic of a Ring

Let R be a ring, and let $r \in R$. We may define n.r for all natural numbers n by recursion on n so that $1 . r=r$ and $n . r=(n-1) \cdot r+r$ for all $n>0$. We define also $0 . r=0_{R}$ and $(-n) . r=-(n . r)$ for all natural numbers n. Then

$$
\begin{gathered}
(m+n) \cdot r=m \cdot r+n \cdot r, \quad n \cdot(r+s)=n \cdot r+n \cdot s, \\
(m n) \cdot r=m \cdot(n \cdot r), \quad(m \cdot r)(n \cdot s)=(m n) \cdot(r s)
\end{gathered}
$$

for all integers m an n and for all elements r and s of R.
In particular, suppose that R is a unital ring. Then the set of all integers n satisfying $n .1_{R}=0_{R}$ is an ideal of \mathbb{Z}. Therefore there exists a unique nonnegative integer p such that $p \mathbb{Z}=\left\{n \in \mathbb{Z}: n .1_{R}=0_{R}\right\}$ (see Theorem 1.6). This integer p is referred to as the characteristic of the ring R, and is denoted by char R.

Lemma 1.8 Let R be an integral domain. Then either char $R=0$ or else char R is a prime number.

Proof Let $p=$ char R. Clearly $p \neq 1$. Suppose that $p>1$ and $p=j k$, where j and k are positive integers. Then $\left(j \cdot 1_{R}\right)\left(k \cdot 1_{R}\right)=(j k) \cdot 1_{R}=p \cdot 1_{R}=0_{R}$. But R is an integral domain. Therefore either $j \cdot 1_{R}=0_{R}$, or $k \cdot 1_{R}=0_{R}$. But if $j .1_{R}=0_{R}$ then p divides j and therefore $j=p$. Similarly if $k .1_{R}=0_{R}$ then $k=p$. It follows that p is a prime number, as required.

1.6 Polynomial Rings

Let R be a unital commutative ring, let 0_{R} denote the zero element of R, and let $R[x]$ denote the set of all polynomials of the form

$$
a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}
$$

where the coefficients a_{0}, \ldots, a_{n} all belong to the ring R.
Each polynomial $f(x)$ with coefficients in the ring R determines and is determined by an infinite sequence

$$
a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, \ldots,
$$

of elements of the ring R, where $a_{j} \in R$ for all non-negative integers j and $a_{j} \neq 0_{R}$ for at most finitely many values of j. The members of this infinite sequence are the coefficients of the polynomial $f(x)$. Given any polynomial $f(x)$ with coefficients $a_{0}, a_{1}, a_{2}, \ldots$, there exists some non-negative integer n such that $a_{j}=0_{R}$ when $j>n$. The polynomial $f(x)$ is then represented by the expression

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n} .
$$

The polynomial $f(x)$ is said to be non-zero if $a_{j} \neq 0_{R}$ for at least one non-negative integer j. If the polynomial $f(x)$ is non-zero then there will be a well-defined non-negative integer d which is equal to the largest integer j for which $a_{j} \neq 0_{R}$. This non-negative integer d is the degree of the non-zero polynomial $f(x)$. A non-zero polynomial $f(x)$ of degree d with coefficients in the ring R is then uniquely representable in the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d},
$$

where $a_{0}, a_{1}, \ldots, a_{d} \in R$ and $a_{d} \neq 0_{R}$. The coefficient a_{d} of f of degree d is referred to as the leading coefficient of the polynomial f.

Definition A non-zero polynomial $f(x)$ of degree d with coefficients in a unital commutative ring R is said to be monic if $a_{d}=1_{R}$, where 1_{R} denotes the multiplicative identity element of the ring R, in which case the polynomial f can be represented in the form

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d-1} x^{d-1}+x^{d} .
$$

where $a_{0}, a_{1}, \ldots, a_{d-1} \in R$.
There are operations of addition and multiplication, defined on the set $R[x]$ of polynomials with coefficients in a unital commutative ring R. These operations are defined so as to generalize the standard operations of addition and multiplication defined on the set of polynomials with complex coefficients. Thus if

$$
\begin{aligned}
& f(x)=\sum_{n=0}^{r} b_{n} x^{n}=b_{0}+b_{1} x+b_{2} x^{2}+\cdots+b_{m-1} x^{m-1}+b_{r} x^{r} \\
& g(x)=\sum_{n=0}^{s} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{n-1} x^{n-1}+c_{s} x^{s}
\end{aligned}
$$

then

$$
f(x)+g(x)=\sum_{n=0}^{s} g_{n} x^{n}=g_{0}+g_{1} x+g_{2} x^{2}+\cdots+g_{d-1} x^{d-1}+g_{d} x^{d},
$$

where $d=\max (r, s)$ and

$$
g_{j}= \begin{cases}b_{j}+c_{j} & \text { if } 0 \leq j \leq \min (r, s) ; \\ b_{j} & \text { if } s<j \leq r ; \\ c_{j} & \text { if } r<j \leq s\end{cases}
$$

Also

$$
\begin{aligned}
f(x) g(x)= & \sum_{j=0}^{r} \sum_{k=0}^{s} b_{j} c_{k} x^{j+k} \\
= & b_{0} c_{0}+\left(b_{0} c_{1}+b_{1} c_{0}\right) x+\left(b_{0} c_{2}+b_{1} c_{1}+b_{2} c_{0}\right) x^{2}+\cdots \\
& \quad+\left(b_{r-1} c_{s}+b_{r} c_{s-1}\right) x^{r+s-1}+b_{r} c_{s} x^{r+s},
\end{aligned}
$$

and thus

$$
f(x) g(x)=\sum_{n=0}^{r+s} a_{n} x^{n}
$$

where

$$
a_{n}=\sum_{j=\max (0, n-s)}^{\min (r, n)} b_{j} c_{n-j}
$$

for $n=0,1,2, \ldots, r+s$. The operations of addition and multiplication of polynomials defined in this fashion satisfy the usual Commutative, Associative and Distributive Laws. Each element r of the coefficient ring R determines a corresponding polynomial of degree zero with coefficients are given by the infinite sequence $r, 0_{R}, 0_{R}, 0_{R}, 0_{R}, \ldots$, where 0_{R} denotes the zero element of the ring R. This polynomial is the constant polynomial in $R[x]$ with coefficient r. It is customary to use the same symbol to represent both the element r of the coefficient ring R and also the corresponding constant polynomial.

In particular, the zero element 0_{R} and the multiplicative identity element 1_{R} of the coefficient ring R determine corresponding constant polynomials, also denoted by 0_{R} and 1_{R}. Moreover $f(x)+0_{R}=f(x)$ and $f(x) 1_{R}=f(x)$ for all polynomials f with coefficients in the ring R. Also each polynomial $f(x)$ with coefficients in R determines a corresponding polynomial $-f(x)$ with the property that $f(x)+(-f(x))=0_{R}$: if

$$
f(x)=a_{0}+a_{1} x+x_{2} x^{2}+\cdots+a_{m-1} x^{m-1}+a_{m} x^{m}
$$

then

$$
-f(x)=\left(-a_{0}\right)+\left(-a_{1}\right) x+\left(-a_{2}\right) x^{2}+\cdots+\left(-a_{m-1}\right) x^{m-1}+\left(-a_{m}\right) x^{m}
$$

The results described above ensure that the set $R[x]$ of polynomials with coefficients in the ring R, with the operations of addition and multiplication of polynomials defined as described above, is itself a unital commutative ring. Moreover there is a standard embedding of the coefficient ring R into the polynomial ring $R[x]$: the coefficient ring R is naturally isomorphic to the subring of $R[x]$ whose elements are constant polynomials, and we can therefore identity each element of the coefficient ring R with the constant polynomial that it determines.

Lemma 1.9 Let K be a field, and let $f \in K[x]$ be a non-zero polynomial with coefficients in K. Then, given any polynomial $h \in K[x]$, there exist unique polynomials q and r in $K[x]$ such that $h=f q+r$ and either $r=0$ or else $\operatorname{deg} r<\operatorname{deg} f$.

Proof If $\operatorname{deg} h<\operatorname{deg} f$ then we may take $q=0$ and $r=h$. In general we prove the existence of q and r by induction on the degree $\operatorname{deg} h$ of h. Thus
suppose that $\operatorname{deg} h \geq \operatorname{deg} f$ and that any polynomial of degree less than $\operatorname{deg} h$ can be expressed in the required form. Now there is some element c of K for which the polynomials $h(x)$ and $c f(x)$ have the same leading coefficient. Let $h_{1}(x)=h(x)-c x^{m} f(x)$, where $m=\operatorname{deg} h-\operatorname{deg} f$. Then either $h_{1}=0$ or $\operatorname{deg} h_{1}<\operatorname{deg} h$. The inductive hypothesis then ensures the existence of polynomials q_{1} and r such that $h_{1}=f q_{1}+r$ and either $r=0$ or else $\operatorname{deg} r<\operatorname{deg} f$. But then $h=f q+r$, where $q(x)=c x^{m}+q_{1}(x)$. We now verify the uniqueness of q and r. Suppose that $f q+r=f \bar{q}+\bar{r}$, where $\bar{q}, \bar{r} \in K[x]$ and either $\bar{r}=0$ or $\operatorname{deg} \bar{r}<\operatorname{deg} f$. Then $(q-\bar{q}) f=r-\bar{r}$. But $\operatorname{deg}((q-\bar{q}) f) \geq \operatorname{deg} f$ whenever $q \neq \bar{q}$, and $\operatorname{deg}(r-\bar{r})<\operatorname{deg} f$ whenever $r \neq \bar{r}$. Therefore the equality $(q-\bar{q}) f=r-\bar{r}$ cannot hold unless $q=\bar{q}$ and $r=\bar{r}$. This proves the uniqueness of q and r.

Any polynomial f with coefficients in a field K generates an ideal (f) of the polynomial ring $K[x]$ consisting of all polynomials in $K[x]$ that are divisible by f.

Lemma 1.10 Let K be a field, and let I be an ideal of the polynomial ring $K[x]$. Then there exists $f \in K[x]$ such that $I=(f)$, where (f) denotes the ideal of $K[x]$ generated by f.

Proof If $I=\{0\}$ then we can take $f=0$. Otherwise choose $f \in I$ such that $f \neq 0$ and the degree of f does not exceed the degree of any non-zero polynomial in I. Then, for each $h \in I$, there exist polynomials q and r in $K[x]$ such that $h=f q+r$ and either $r=0$ or else $\operatorname{deg} r<\operatorname{deg} f$. (Lemma 1.9). But $r \in I$, since $r=h-f q$ and h and f both belong to I. The choice of f then ensures that $r=0$ and $h=q f$. Thus $I=(f)$.

