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1. (a) (3 marks) Let G be a group. What is meant by saying that a
subset H of G is a subgroup of G? What is meant by saying that
a subgroup N of G is a normal subgroup of G?

(b) (2 marks) Let G and K be groups. What is meant by saying that
a function θ:G→ K from G to K is a homomorphism? What is
the kernel of a homomorphism θ:G→ K?

(c) (4 marks) Let G and K be groups, and let θ:G→ K be a homomor-
phism from G to K. Prove that the kernel of this homomorphism
is a subgroup of G, and is a normal subgroup of G. Prove also
that the homomorphism θ:G → K is injective if and only if its
kernel is the trivial subgroup {eG}, where eG denotes the identity
element of G.

(d) (4 marks) Let G1 and G2 be groups, let N1 be a normal subgroup of
G1, and let N2 be a normal subgroup of G2. Prove that N1×N2 is
a subgroup of G1 ×G2. Prove also that this subgroup is a normal
subgroup of G1 ×G2.

(e) (4 marks) Let G be a group, and let N1 and N2 be normal subgroups
of G. Suppose that N1∩N2 = {eG}, where eG denotes the identity
element of G. Prove that xy = yx for all x ∈ N1 and y ∈ N2.

(f) (3 marks) Let G be a finite group, and let N1 and N2 be normal
subgroups of G. Suppose that N1 ∩ N2 = {eG}, and that |G| =
|N1| |N2|. Prove that G ∼= N1 ×N2.

(a) Bookwork.

(b) Bookwork.
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(c) Bookwork.

(d) Let e1 and e2 denote the identity elements of G1, and G2, and let
(n1, n2) and (n′1, n

′
2) be elements of N1 × N2. Then the identity

element of G1×G2 is (e1, e2), and (e1, e2) ∈ N1×N2, since e1 ∈ N1

and e2 ∈ N2. Also (n1, n2)(n′1, n
′
2) = (n1n

′
1, n2n

′
2) ∈ N1×N2, since

n1n
′
1 ∈ N1 and n2n

′
2 ∈ N2. Also (n1, n2)−1 = (n−1

1 , n−1
2 ) ∈ N1×N2,

since n−1
1 ∈ N1 and n−1

2 ∈ N2. Thus N1 ×N2 is a subgroup of G.

Let (g1, g2) be an element of G1 ×G2). Then

(g1, g2)(n1, n2)(g1, g2)−1 = (g1n1, g2n2)(g−1
1 , g−1

2 )

= (g1n1g
−1
1 , g2n2g

−1
2 ) ∈ N1 ×N2.

Thus N1 ×N2 is a normal subgroup of G1 ×G2.

(e) Let x ∈ N1 and y ∈ N2. Then yx−1y−1 ∈ N1 and xyx−1 ∈ N2, since
N1 and N2 are normal subgroups of G. But then xyx−1y−1 ∈ N1∩
N2, since xyx−1y−1 = x(yx−1y−1) = (xyx−1)y−1, and therefore
xyx−1y−1 = e. Thus xy = yx for all x ∈ N1 and y ∈ N2.

(f) The function ϕ:N1 × N2 → G which sends (x, y) ∈ N1 × N2 to
xy is a homomorphism. This homomorphism is injective, for if
xy = e for some x ∈ N1 and y ∈ N2, then x = y−1, and hence
x ∈ N1∩N2, from which it follows that x = e and y = e. But |N1×
N2| = |N1| |N2| = |G|, and any injective homomorphism between
two finite groups of the same order is necessarily an isomorphism.
Therefore the function ϕ:N1 × N2 → G is an isomorphism, and
thus G ∼= N1 ×N2.

2. Most of Question 2 on the 2008 MA311 paper did not cover
MA3411 material

3. Throughout this question, let K be a field, and let K[x] denote the
ring of polynomials in a single indeterminate x with coefficients in the
field K.

(a) (5 marks) Let f ∈ K[x] be a non-zero polynomial with coefficients
in K. Prove that, given any polynomial h ∈ K[x], there exist
unique polynomials q and r in K[x] such that h = fq + r and
either r = 0 or else deg r < deg f .

(b) (5 marks) Let I be an ideal of the polynomial ring K[x]. Prove
that there exists f ∈ K[x] such that I = (f), where (f) denotes
the ideal of K[x] generated by f .
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Polynomials f1, f2, . . . , fk with coefficients in some field K are said to
be coprime if there is no non-constant polynomial that divides all of
them.

(c) (5 marks) Let f1, f2, . . . , fk be coprime polynomials with coeffi-
cients in the field K. Prove that there exist polynomials g1, g2, . . . , gk
with coefficients in K such that

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fk(x)gk(x) = 1.

(d) (5 marks) Let f , g and h be polynomials with coefficients in the
field K. Suppose that both of the polynomials f and g divide h,
and that the polynomials f and g are coprime. Prove that the
product polynomial fg divides h.

(a) Bookwork.

(b) Bookwork.

(c) Bookwork.

(d) It follows from (c) that there exist polynomials p and q with coef-
ficients in K such that 1 = pf + qg (where 1 denotes the constant
polynomial whose value is the identity element 1 of the field K).
Then h = pfh + qgh. Now h is divisible by g, and therefore fh
is divisible by fg. Also h is divisible by f , and therefore gh is
divisble by fg. It follows that pfh + qgh is divisible by fg, and
thus h is divisible by fg, as required.

4. (a) (3 marks) What is a field extension? What is meant by saying
that a field extension is finite? What is the degree [L:K] of a
finite field extension L:K?

(b) (3 marks) Let L:K be a field extension. What is meant by saying
that an element α of L is algebraic over K? What is meant by
saying that the field extension L:K is algebraic?

(c) (10 marks) State and prove the Tower Law for field extensions.

(d) (4 marks) Prove that any finite field extension is algebraic.

The above question is bookwork in its entirety.

5. (a) (10 marks) State and prove the Primitive Element Theorem. [You
may use without proof the result that the multiplicative group of
non-zero elements of a finite field is cyclic.]
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(b) (6 marks) Prove that Q(
√

3,
√

5) = Q(
√

3 +
√

5).

(c) (4 marks) What is the degree of the minimum polynomial of
√

3 +√
5 over the field Q of rational numbers? [Briefly justify your an-

swer. You may use, without proof, the fact that
√

5 6∈ Q(
√

3).
Note that you are not asked to find the minimum polynomial it-
self.]

(a) Bookwork.

(b)
√

3 +
√

5 ∈ Q(
√

3 +
√

5). But Q(
√

3 +
√

5) is by definition the
smallest subfield of the field of complex number that contains√

3 +
√

5, and is contained in every other such subfield. Therefore
Q(
√

3 +
√

5) ⊂ R(
√

3,
√

5).

Let α =
√

3 +
√

5. Then α2 = 8 + 2
√

15 and α3 = 18
√

3 + 14
√

5.
Therefore

√
3 = 1

4
(α3 − α). It follows that

√
3 ∈ Q(α). But

then
√

5 ∈ Q(α), as
√

5 = α −
√

3. It follows that Q(
√

3,
√

5) ⊂
Q(
√

3 +
√

5). We conclude that Q(
√

3 +
√

5) = R(
√

3,
√

5), as
required.

(c) The minimum polynomial of
√

3 +
√

5 of Q is of degree 4. Indeed√
5 is a root of the polynomial x2 − 5, and the coefficients of this

polynomial belong toQ, and therefore belong toQ(
√

3). Therefore
the minimum polynomial of

√
5 over Q(

√
3) must divide x2 −

5. But this minimum polynomial is not of degree 1, since
√

5 6∈
Q(
√

3). Therefore x2 − 5 is the minimum polynomial of
√

5 over
Q(
√

3), and thus [Q(
√

3,
√

5):Q(
√

3)] = 2. Also x2 − 3 is the
minumum polynomial of

√
3 overQ, and therefore [Q(

√
3):Q] = 2.

It follows from the Tower Law and (b) that

[Q(
√

3 +
√

5):Q] = [Q(
√

3,
√

5):Q]

= [Q(
√

3,
√

5):Q(
√

3)][Q(
√

3):Q] = 4.

But the degree of this field extension is equal to the degree of the
minimum polynomial of

√
3 +
√

5 over Q. The result follows.

6. (a) (3 marks) Let L:K be a field extension, and let f be a polynomial
with coefficients in K. What is meant by saying that the polyno-
mial f splits over L? What is meant by saying that L is a splitting
field for f over K?

(b) (10 marks) Let K1 and K2 be fields, let σ:K1 → K2 be an iso-
morphism from K1 to K2, let f be a polynomial with coefficients
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in K1, let σ∗(f) be the polynomial with coefficients in K2 that cor-
responds to f under σ, and let L1 and L2 be splitting fields for f
and σ∗(f) over K1 and K2 respectively. Prove that there exists an
isomorphism τ :L1 → L2 which extends σ:K1 → K2.

(c) (2 marks) What is meant by saying that a field extension L:K is
normal?

(d) (5 marks) Determine which, if any, of the following field extensions
are normal:—

(i) Q(
√

2):Q;

(ii) Q( 3
√

2):Q;

(iii) Q( 3
√

2,
√

3, i):Q.

[Briefly justify your answers. You may use without proof the result
that any splitting field extension is a normal extension. Here i2 =
−1, and 3

√
2 denotes the unique positive real number ξ satisfying

ξ3 = 2.]

(a) Bookwork.

(b) Bookwork.

(c) Bookwork.

(d) The field extension Q(
√

2):Q is normal, since Q(
√

2) is a splitting
field for the polynomial x2 − 2 over Q.

The field extension Q( 3
√

2):Q is not normal. An application of
Eisenstein’s criterion shows that the polynomial x3 − 2 is irre-
ducible over the field Q of rational numbers. It has exactly one
real root 3

√
2. But Q( 3

√
2) is a subfield of the field of real num-

bers. Therefore the irreducible polynomial x3 − 2 has a root in
the field Q( 3

√
2) but does not split over this field.

The field extension Q( 3
√

2,
√

3, i):Q is normal. Indeed let L =

Q( 3
√

2,
√

3, i), and let ω = −1

2
+

√
3

2
i. Then ω ∈ L, and

x3 − 2 = (x− ξ)(x− ωξ)(x− ω2ξ),

where ξ = 3
√

2. It follows from this that L is a splitting field for
the polynomial (x3 − 2)(x2 − 3)(x2 + 1) over Q, and therefore the
extension L:Q is normal.

7. Let K be a subfield of the field of complex numbers that contains the

complex number ω, where ω = −1

2
+

√
3

2
i. (Note that ω 6= 1, ω3 = 1
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and 1 + ω+ ω2 = 0.) Let L be an extension field of K with [L:K] = 3,
and let f be a cubic polynomial with coefficients in K that splits over
L but not over K. Let α, β and γ denote the roots of f in L and let

λ = α + ωβ + ω2γ, µ = α + ω2β + ωγ.

(a) (10 marks) Show that there exists a K-automorphism θ of L such
that θ(α) = β, θ(β) = γ and θ(γ) = α. What are θ(λ) and θ(µ)?

(b) (5 marks) Explain why λ3 ∈ K, µ3 ∈ K and λµ ∈ K.

(c) (5 marks) Find formulae expressing α, β and γ in terms of ω, λ,
µ and c, where c = α + β + γ.

(a) If the polynomial splits over some subfield M of L then [M :K] > 1
and [M :K] divides [L:K], and therefore [M :K] = 3 and M = L.
It follows from this that the polynomial f cannot split over any
proper subfield of L that contains K, and therefore L is a splitting
field for the polynomial f over K. It follows from standard theo-
rems that the field extension L:K is finite, normal and separable,
and therefore |Γ(L:K)| = [L:K] = 3.

Any group of order 3 is a cyclic group. Any element of the Galois
group is determined by the corresponding permutation of the roots
of the polynomial f . A generator ϕ of the Galois group must
induce a permutation of {α, β, γ} that is over order 3. Then either
ϕ(α) = β, ϕ(β) = γ and ϕ(γ) = α, in which case we can take
θ = ϕ, or else either ϕ(α) = γ, ϕ(γ) = β and ϕ(β) = α, in which
case we can take θ = ϕ2.

Now θ(ω) = ω, since ω ∈ K and θ fixes all elements of the ground
field K. It follows that

θ(λ) = β + ωγ + ω2α = ω2λ

θ(µ) = β + ω2γ + ωα = ωµ

(b) Now

θ(λ3) = (θ(λ))3 = (ω2λ)3 = ω6λ3 = λ3,

θ(µ3) = (θ(µ))3 = (ωµ)3 = ω3µ3 = µ3,

and
θ(λµ) = θ(λ)θ(µ) = (ω2λ)(ωµ) = ω3λµ = λµ.

Also θ generates the Galois group Γ(L:K). Therefore λ3, µ3 and
λµ belong to the fixed field of the Galois group Γ(L:K). But this
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fixed field is the ground field K, because the extension L:K is a
splitting field extension, and thus a Galois extension. Therefore
λ3 ∈ K, µ3 ∈ K and λµ ∈ K.

(c)

c+ λ+ µ = 3α + (1 + ω + ω2)(β + γ) = 3α

c+ ωλ+ ω2µ = 3γ + (1 + ω + ω2)(α + β) = 3γ

c+ ω2λ+ ωµ = 3β + (1 + ω + ω2)(α + γ) = 3β

Thus

α =
1

3
(c+ λ+ µ), β =

1

3
(c+ ω2λ+ ωµ), γ =

1

3
(c+ ωλ+ ω2µ).
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