Module MA3411, Michaelmas Term 2009 Relevant Examination Questions from the MA311 2008 Paper

David R. Wilkins

- 1. (a) (3 marks) Let G be a group. What is meant by saying that a subset H of G is a subgroup of G? What is meant by saying that a subgroup N of G is a normal subgroup of G?
 - (b) (2 marks) Let G and K be groups. What is meant by saying that a function $\theta: G \to K$ from G to K is a homomorphism? What is the kernel of a homomorphism $\theta: G \to K$?
 - (c) (4 marks) Let G and K be groups, and let $\theta: G \to K$ be a homomorphism from G to K. Prove that the kernel of this homomorphism is a subgroup of G, and is a normal subgroup of G. Prove also that the homomorphism $\theta: G \to K$ is injective if and only if its kernel is the trivial subgroup $\{e_G\}$, where e_G denotes the identity element of G.
 - (d) (4 marks) Let G₁ and G₂ be groups, let N₁ be a normal subgroup of G₁, and let N₂ be a normal subgroup of G₂. Prove that N₁ × N₂ is a subgroup of G₁ × G₂. Prove also that this subgroup is a normal subgroup of G₁ × G₂.
 - (e) (4 marks) Let G be a group, and let N_1 and N_2 be normal subgroups of G. Suppose that $N_1 \cap N_2 = \{e_G\}$, where e_G denotes the identity element of G. Prove that xy = yx for all $x \in N_1$ and $y \in N_2$.
 - (f) (3 marks) Let G be a finite group, and let N_1 and N_2 be normal subgroups of G. Suppose that $N_1 \cap N_2 = \{e_G\}$, and that $|G| = |N_1| |N_2|$. Prove that $G \cong N_1 \times N_2$.
 - (a) **Bookwork**.
 - (b) Bookwork.

(c) Bookwork.

(d) Let e_1 and e_2 denote the identity elements of G_1 , and G_2 , and let (n_1, n_2) and (n'_1, n'_2) be elements of $N_1 \times N_2$. Then the identity element of $G_1 \times G_2$ is (e_1, e_2) , and $(e_1, e_2) \in N_1 \times N_2$, since $e_1 \in N_1$ and $e_2 \in N_2$. Also $(n_1, n_2)(n'_1, n'_2) = (n_1n'_1, n_2n'_2) \in N_1 \times N_2$, since $n_1n'_1 \in N_1$ and $n_2n'_2 \in N_2$. Also $(n_1, n_2)^{-1} = (n_1^{-1}, n_2^{-1}) \in N_1 \times N_2$, since $n_1^{-1} \in N_1$ and $n_2^{-1} \in N_2$. Thus $N_1 \times N_2$ is a subgroup of G. Let (g_1, g_2) be an element of $G_1 \times G_2$). Then

$$(g_1, g_2)(n_1, n_2)(g_1, g_2)^{-1} = (g_1n_1, g_2n_2)(g_1^{-1}, g_2^{-1}) = (g_1n_1g_1^{-1}, g_2n_2g_2^{-1}) \in N_1 \times N_2.$$

Thus $N_1 \times N_2$ is a normal subgroup of $G_1 \times G_2$.

- (e) Let $x \in N_1$ and $y \in N_2$. Then $yx^{-1}y^{-1} \in N_1$ and $xyx^{-1} \in N_2$, since N_1 and N_2 are normal subgroups of G. But then $xyx^{-1}y^{-1} \in N_1 \cap N_2$, since $xyx^{-1}y^{-1} = x(yx^{-1}y^{-1}) = (xyx^{-1})y^{-1}$, and therefore $xyx^{-1}y^{-1} = e$. Thus xy = yx for all $x \in N_1$ and $y \in N_2$.
- (f) The function $\varphi: N_1 \times N_2 \to G$ which sends $(x, y) \in N_1 \times N_2$ to xy is a homomorphism. This homomorphism is injective, for if xy = e for some $x \in N_1$ and $y \in N_2$, then $x = y^{-1}$, and hence $x \in N_1 \cap N_2$, from which it follows that x = e and y = e. But $|N_1 \times N_2| = |N_1| |N_2| = |G|$, and any injective homomorphism between two finite groups of the same order is necessarily an isomorphism. Therefore the function $\varphi: N_1 \times N_2 \to G$ is an isomorphism, and thus $G \cong N_1 \times N_2$.

2. Most of Question 2 on the 2008 MA311 paper did not cover MA3411 material

- 3. Throughout this question, let K be a field, and let K[x] denote the ring of polynomials in a single indeterminate x with coefficients in the field K.
 - (a) (5 marks) Let $f \in K[x]$ be a non-zero polynomial with coefficients in K. Prove that, given any polynomial $h \in K[x]$, there exist unique polynomials q and r in K[x] such that h = fq + r and either r = 0 or else deg $r < \deg f$.
 - (b) (5 marks) Let I be an ideal of the polynomial ring K[x]. Prove that there exists $f \in K[x]$ such that I = (f), where (f) denotes the ideal of K[x] generated by f.

Polynomials f_1, f_2, \ldots, f_k with coefficients in some field K are said to be coprime if there is no non-constant polynomial that divides all of them.

(c) (5 marks) Let f_1, f_2, \ldots, f_k be coprime polynomials with coefficients in the field K. Prove that there exist polynomials g_1, g_2, \ldots, g_k with coefficients in K such that

$$f_1(x)g_1(x) + f_2(x)g_2(x) + \dots + f_k(x)g_k(x) = 1.$$

- (d) (5 marks) Let f, g and h be polynomials with coefficients in the field K. Suppose that both of the polynomials f and g divide h, and that the polynomials f and g are coprime. Prove that the product polynomial fg divides h.
- (a) **Bookwork**.
- (b) Bookwork.
- (c) Bookwork.
- (d) It follows from (c) that there exist polynomials p and q with coefficients in K such that 1 = pf + qg (where 1 denotes the constant polynomial whose value is the identity element 1 of the field K). Then h = pfh + qgh. Now h is divisible by g, and therefore fh is divisible by fg. Also h is divisible by f, and therefore gh is divisible by fg. It follows that pfh + qgh is divisible by fg, and thus h is divisible by fg, as required.
- 4. (a) (3 marks) What is a field extension? What is meant by saying that a field extension is finite? What is the degree [L:K] of a finite field extension L: K?
 - (b) (3 marks) Let L: K be a field extension. What is meant by saying that an element α of L is algebraic over K? What is meant by saying that the field extension L: K is algebraic?
 - (c) (10 marks) State and prove the Tower Law for field extensions.
 - (d) (4 marks) Prove that any finite field extension is algebraic.

The above question is bookwork in its entirety.

5. (a) (10 marks) State and prove the Primitive Element Theorem. [You may use without proof the result that the multiplicative group of non-zero elements of a finite field is cyclic.]

- (b) (6 marks) Prove that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) = \mathbb{Q}(\sqrt{3} + \sqrt{5}).$
- (c) (4 marks) What is the degree of the minimum polynomial of $\sqrt{3} + \sqrt{5}$ over the field \mathbb{Q} of rational numbers? [Briefly justify your answer. You may use, without proof, the fact that $\sqrt{5} \notin \mathbb{Q}(\sqrt{3})$. Note that you are not asked to find the minimum polynomial itself.]
- (a) Bookwork.
- (b) $\sqrt{3} + \sqrt{5} \in \mathbb{Q}(\sqrt{3} + \sqrt{5})$. But $\mathbb{Q}(\sqrt{3} + \sqrt{5})$ is by definition the smallest subfield of the field of complex number that contains $\sqrt{3} + \sqrt{5}$, and is contained in every other such subfield. Therefore $\mathbb{Q}(\sqrt{3} + \sqrt{5}) \subset \mathbb{R}(\sqrt{3}, \sqrt{5})$.

Let $\alpha = \sqrt{3} + \sqrt{5}$. Then $\alpha^2 = 8 + 2\sqrt{15}$ and $\alpha^3 = 18\sqrt{3} + 14\sqrt{5}$. Therefore $\sqrt{3} = \frac{1}{4}(\alpha^3 - \alpha)$. It follows that $\sqrt{3} \in \mathbb{Q}(\alpha)$. But then $\sqrt{5} \in \mathbb{Q}(\alpha)$, as $\sqrt{5} = \alpha - \sqrt{3}$. It follows that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subset \mathbb{Q}(\sqrt{3} + \sqrt{5})$. We conclude that $\mathbb{Q}(\sqrt{3} + \sqrt{5}) = \mathbb{R}(\sqrt{3}, \sqrt{5})$, as required.

(c) The minimum polynomial of $\sqrt{3} + \sqrt{5}$ of \mathbb{Q} is of degree 4. Indeed $\sqrt{5}$ is a root of the polynomial $x^2 - 5$, and the coefficients of this polynomial belong to \mathbb{Q} , and therefore belong to $\mathbb{Q}(\sqrt{3})$. Therefore the minimum polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{3})$ must divide $x^2 - 5$. But this minimum polynomial is not of degree 1, since $\sqrt{5} \notin \mathbb{Q}(\sqrt{3})$. Therefore $x^2 - 5$ is the minimum polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{3})$, and thus $[\mathbb{Q}(\sqrt{3},\sqrt{5}):\mathbb{Q}(\sqrt{3})] = 2$. Also $x^2 - 3$ is the minumum polynomial of $\sqrt{3}$ over \mathbb{Q} , and therefore $[\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 2$. It follows from the Tower Law and (b) that

$$\begin{aligned} [\mathbb{Q}(\sqrt{3} + \sqrt{5}):\mathbb{Q}] &= [\mathbb{Q}(\sqrt{3}, \sqrt{5}):\mathbb{Q}] \\ &= [\mathbb{Q}(\sqrt{3}, \sqrt{5}):\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 4 \end{aligned}$$

But the degree of this field extension is equal to the degree of the minimum polynomial of $\sqrt{3} + \sqrt{5}$ over \mathbb{Q} . The result follows.

- 6. (a) (3 marks) Let L: K be a field extension, and let f be a polynomial with coefficients in K. What is meant by saying that the polynomial f splits over L? What is meant by saying that L is a splitting field for f over K?
 - (b) (10 marks) Let K_1 and K_2 be fields, let $\sigma: K_1 \to K_2$ be an isomorphism from K_1 to K_2 , let f be a polynomial with coefficients

in K_1 , let $\sigma_*(f)$ be the polynomial with coefficients in K_2 that corresponds to f under σ , and let L_1 and L_2 be splitting fields for f and $\sigma_*(f)$ over K_1 and K_2 respectively. Prove that there exists an isomorphism $\tau: L_1 \to L_2$ which extends $\sigma: K_1 \to K_2$.

- (c) (2 marks) What is meant by saying that a field extension L: K is normal?
- (d) (5 marks) Determine which, if any, of the following field extensions are normal:—
 - (i) $\mathbb{Q}(\sqrt{2}):\mathbb{Q};$
 - (*ii*) $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q};$
 - (*iii*) $\mathbb{Q}(\sqrt[3]{2},\sqrt{3},i)$: \mathbb{Q} .

[Briefly justify your answers. You may use without proof the result that any splitting field extension is a normal extension. Here $i^2 = -1$, and $\sqrt[3]{2}$ denotes the unique positive real number ξ satisfying $\xi^3 = 2$.]

- (a) Bookwork.
- (b) Bookwork.
- (c) Bookwork.
- (d) The field extension $\mathbb{Q}(\sqrt{2})$: \mathbb{Q} is normal, since $\mathbb{Q}(\sqrt{2})$ is a splitting field for the polynomial $x^2 2$ over \mathbb{Q} .

The field extension $\mathbb{Q}(\sqrt[3]{2}):\mathbb{Q}$ is not normal. An application of Eisenstein's criterion shows that the polynomial $x^3 - 2$ is irreducible over the field \mathbb{Q} of rational numbers. It has exactly one real root $\sqrt[3]{2}$. But $\mathbb{Q}(\sqrt[3]{2})$ is a subfield of the field of real numbers. Therefore the irreducible polynomial $x^3 - 2$ has a root in the field $\mathbb{Q}(\sqrt[3]{2})$ but does not split over this field.

The field extension $\mathbb{Q}(\sqrt[3]{2},\sqrt{3},i):\mathbb{Q}$ is normal. Indeed let $L = \mathbb{Q}(\sqrt[3]{2},\sqrt{3},i)$, and let $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. Then $\omega \in L$, and $x^3 - 2 = (x - \xi)(x - \omega\xi)(x - \omega^2\xi)$,

where $\xi = \sqrt[3]{2}$. It follows from this that *L* is a splitting field for the polynomial $(x^3 - 2)(x^2 - 3)(x^2 + 1)$ over \mathbb{Q} , and therefore the extension $L:\mathbb{Q}$ is normal.

7. Let K be a subfield of the field of complex numbers that contains the complex number ω , where $\omega = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$. (Note that $\omega \neq 1$, $\omega^3 = 1$)

and $1 + \omega + \omega^2 = 0$.) Let L be an extension field of K with [L:K] = 3, and let f be a cubic polynomial with coefficients in K that splits over L but not over K. Let α , β and γ denote the roots of f in L and let

$$\lambda = \alpha + \omega\beta + \omega^2\gamma, \quad \mu = \alpha + \omega^2\beta + \omega\gamma.$$

- (a) (10 marks) Show that there exists a K-automorphism θ of L such that $\theta(\alpha) = \beta$, $\theta(\beta) = \gamma$ and $\theta(\gamma) = \alpha$. What are $\theta(\lambda)$ and $\theta(\mu)$?
- (b) (5 marks) Explain why $\lambda^3 \in K$, $\mu^3 \in K$ and $\lambda \mu \in K$.
- (c) (5 marks) Find formulae expressing α , β and γ in terms of ω , λ , μ and c, where $c = \alpha + \beta + \gamma$.
- (a) If the polynomial splits over some subfield M of L then [M:K] > 1and [M:K] divides [L:K], and therefore [M:K] = 3 and M = L. It follows from this that the polynomial f cannot split over any proper subfield of L that contains K, and therefore L is a splitting field for the polynomial f over K. It follows from standard theorems that the field extension L:K is finite, normal and separable, and therefore $|\Gamma(L:K)| = [L:K] = 3$.

Any group of order 3 is a cyclic group. Any element of the Galois group is determined by the corresponding permutation of the roots of the polynomial f. A generator φ of the Galois group must induce a permutation of $\{\alpha, \beta, \gamma\}$ that is over order 3. Then either $\varphi(\alpha) = \beta$, $\varphi(\beta) = \gamma$ and $\varphi(\gamma) = \alpha$, in which case we can take $\theta = \varphi$, or else either $\varphi(\alpha) = \gamma$, $\varphi(\gamma) = \beta$ and $\varphi(\beta) = \alpha$, in which case we can take $\theta = \varphi^2$.

Now $\theta(\omega) = \omega$, since $\omega \in K$ and θ fixes all elements of the ground field K. It follows that

$$\begin{aligned} \theta(\lambda) &= \beta + \omega\gamma + \omega^2 \alpha = \omega^2 \lambda \\ \theta(\mu) &= \beta + \omega^2 \gamma + \omega \alpha = \omega \mu \end{aligned}$$

(b) Now

$$\begin{array}{ll} \theta(\lambda^3) &=& (\theta(\lambda))^3 = (\omega^2 \lambda)^3 = \omega^6 \lambda^3 = \lambda^3, \\ \theta(\mu^3) &=& (\theta(\mu))^3 = (\omega \mu)^3 = \omega^3 \mu^3 = \mu^3, \end{array}$$

and

$$\theta(\lambda\mu) = \theta(\lambda)\theta(\mu) = (\omega^2\lambda)(\omega\mu) = \omega^3\lambda\mu = \lambda\mu.$$

Also θ generates the Galois group $\Gamma(L; K)$. Therefore λ^3 , μ^3 and $\lambda \mu$ belong to the fixed field of the Galois group $\Gamma(L; K)$. But this

fixed field is the ground field K, because the extension L: K is a splitting field extension, and thus a Galois extension. Therefore $\lambda^3 \in K$, $\mu^3 \in K$ and $\lambda \mu \in K$.

$$c + \lambda + \mu = 3\alpha + (1 + \omega + \omega^2)(\beta + \gamma) = 3\alpha$$

$$c + \omega\lambda + \omega^2\mu = 3\gamma + (1 + \omega + \omega^2)(\alpha + \beta) = 3\gamma$$

$$c + \omega^2\lambda + \omega\mu = 3\beta + (1 + \omega + \omega^2)(\alpha + \gamma) = 3\beta$$

Thus

$$\alpha = \frac{1}{3}(c + \lambda + \mu), \beta = \frac{1}{3}(c + \omega^2 \lambda + \omega\mu), \gamma = \frac{1}{3}(c + \omega\lambda + \omega^2\mu).$$