Module MA3411, Michaelmas Term 2009 Relevant Examination Questions from the MA311 2008 Paper

David R. Wilkins

1. (a) (3 marks) Let G be a group. What is meant by saying that a subset H of G is a subgroup of G ? What is meant by saying that a subgroup N of G is a normal subgroup of G ?
(b) (2 marks) Let G and K be groups. What is meant by saying that a function $\theta: G \rightarrow K$ from G to K is a homomorphism? What is the kernel of a homomorphism $\theta: G \rightarrow K$?
(c) (4 marks) Let G and K be groups, and let $\theta: G \rightarrow K$ be a homomorphism from G to K. Prove that the kernel of this homomorphism is a subgroup of G, and is a normal subgroup of G. Prove also that the homomorphism $\theta: G \rightarrow K$ is injective if and only if its kernel is the trivial subgroup $\left\{e_{G}\right\}$, where e_{G} denotes the identity element of G.
(d) (4 marks) Let G_{1} and G_{2} be groups, let N_{1} be a normal subgroup of G_{1}, and let N_{2} be a normal subgroup of G_{2}. Prove that $N_{1} \times N_{2}$ is a subgroup of $G_{1} \times G_{2}$. Prove also that this subgroup is a normal subgroup of $G_{1} \times G_{2}$.
(e) (4 marks) Let G be a group, and let N_{1} and N_{2} be normal subgroups of G. Suppose that $N_{1} \cap N_{2}=\left\{e_{G}\right\}$, where e_{G} denotes the identity element of G. Prove that $x y=y x$ for all $x \in N_{1}$ and $y \in N_{2}$.
(f) (3 marks) Let G be a finite group, and let N_{1} and N_{2} be normal subgroups of G. Suppose that $N_{1} \cap N_{2}=\left\{e_{G}\right\}$, and that $|G|=$ $\left|N_{1}\right|\left|N_{2}\right|$. Prove that $G \cong N_{1} \times N_{2}$.
(a) Bookwork.
(b) Bookwork.

(c) Bookwork.

(d) Let e_{1} and e_{2} denote the identity elements of G_{1}, and G_{2}, and let $\left(n_{1}, n_{2}\right)$ and ($n_{1}^{\prime}, n_{2}^{\prime}$) be elements of $N_{1} \times N_{2}$. Then the identity element of $G_{1} \times G_{2}$ is $\left(e_{1}, e_{2}\right)$, and $\left(e_{1}, e_{2}\right) \in N_{1} \times N_{2}$, since $e_{1} \in N_{1}$ and $e_{2} \in N_{2}$. Also $\left(n_{1}, n_{2}\right)\left(n_{1}^{\prime}, n_{2}^{\prime}\right)=\left(n_{1} n_{1}^{\prime}, n_{2} n_{2}^{\prime}\right) \in N_{1} \times N_{2}$, since $n_{1} n_{1}^{\prime} \in N_{1}$ and $n_{2} n_{2}^{\prime} \in N_{2}$. Also $\left(n_{1}, n_{2}\right)^{-1}=\left(n_{1}^{-1}, n_{2}^{-1}\right) \in N_{1} \times N_{2}$, since $n_{1}^{-1} \in N_{1}$ and $n_{2}^{-1} \in N_{2}$. Thus $N_{1} \times N_{2}$ is a subgroup of G.
Let $\left(g_{1}, g_{2}\right)$ be an element of $\left.G_{1} \times G_{2}\right)$. Then

$$
\begin{aligned}
\left(g_{1}, g_{2}\right)\left(n_{1}, n_{2}\right)\left(g_{1}, g_{2}\right)^{-1} & =\left(g_{1} n_{1}, g_{2} n_{2}\right)\left(g_{1}^{-1}, g_{2}^{-1}\right) \\
& =\left(g_{1} n_{1} g_{1}^{-1}, g_{2} n_{2} g_{2}^{-1}\right) \in N_{1} \times N_{2} .
\end{aligned}
$$

Thus $N_{1} \times N_{2}$ is a normal subgroup of $G_{1} \times G_{2}$.
(e) Let $x \in N_{1}$ and $y \in N_{2}$. Then $y x^{-1} y^{-1} \in N_{1}$ and $x y x^{-1} \in N_{2}$, since N_{1} and N_{2} are normal subgroups of G. But then $x y x^{-1} y^{-1} \in N_{1} \cap$ N_{2}, since $x y x^{-1} y^{-1}=x\left(y x^{-1} y^{-1}\right)=\left(x y x^{-1}\right) y^{-1}$, and therefore $x y x^{-1} y^{-1}=e$. Thus $x y=y x$ for all $x \in N_{1}$ and $y \in N_{2}$.
(f) The function $\varphi: N_{1} \times N_{2} \rightarrow G$ which sends $(x, y) \in N_{1} \times N_{2}$ to $x y$ is a homomorphism. This homomorphism is injective, for if $x y=e$ for some $x \in N_{1}$ and $y \in N_{2}$, then $x=y^{-1}$, and hence $x \in N_{1} \cap N_{2}$, from which it follows that $x=e$ and $y=e$. But $\mid N_{1} \times$ $N_{2}\left|=\left|N_{1}\right|\right| N_{2}|=|G|$, and any injective homomorphism between two finite groups of the same order is necessarily an isomorphism. Therefore the function $\varphi: N_{1} \times N_{2} \rightarrow G$ is an isomorphism, and thus $G \cong N_{1} \times N_{2}$.

2. Most of Question 2 on the 2008 MA311 paper did not cover MA3411 material

3. Throughout this question, let K be a field, and let $K[x]$ denote the ring of polynomials in a single indeterminate x with coefficients in the field K.
(a) (5 marks) Let $f \in K[x]$ be a non-zero polynomial with coefficients in K. Prove that, given any polynomial $h \in K[x]$, there exist unique polynomials q and r in $K[x]$ such that $h=f q+r$ and either $r=0$ or else $\operatorname{deg} r<\operatorname{deg} f$.
(b) (5 marks) Let I be an ideal of the polynomial ring $K[x]$. Prove that there exists $f \in K[x]$ such that $I=(f)$, where (f) denotes the ideal of $K[x]$ generated by f.

Polynomials $f_{1}, f_{2}, \ldots, f_{k}$ with coefficients in some field K are said to be coprime if there is no non-constant polynomial that divides all of them.
(c) (5 marks) Let $f_{1}, f_{2}, \ldots, f_{k}$ be coprime polynomials with coefficients in the field K. Prove that there exist polynomials $g_{1}, g_{2}, \ldots, g_{k}$ with coefficients in K such that

$$
f_{1}(x) g_{1}(x)+f_{2}(x) g_{2}(x)+\cdots+f_{k}(x) g_{k}(x)=1 .
$$

(d) (5 marks) Let f, g and h be polynomials with coefficients in the field K. Suppose that both of the polynomials f and g divide h, and that the polynomials f and g are coprime. Prove that the product polynomial fg divides h.
(a) Bookwork.
(b) Bookwork.
(c) Bookwork.
(d) It follows from (c) that there exist polynomials p and q with coefficients in K such that $1=p f+q g$ (where 1 denotes the constant polynomial whose value is the identity element 1 of the field K). Then $h=p f h+q g h$. Now h is divisible by g, and therefore $f h$ is divisible by $f g$. Also h is divisible by f, and therefore $g h$ is divisble by $f g$. It follows that $p f h+q g h$ is divisible by $f g$, and thus h is divisible by $f g$, as required.
4. (a) (3 marks) What is a field extension? What is meant by saying that a field extension is finite? What is the degree $[L: K]$ of a finite field extension L : K ?
(b) (3 marks) Let L: K be a field extension. What is meant by saying that an element α of L is algebraic over K ? What is meant by saying that the field extension L : K is algebraic?
(c) (10 marks) State and prove the Tower Law for field extensions.
(d) (4 marks) Prove that any finite field extension is algebraic.

The above question is bookwork in its entirety.

5. (a) (10 marks) State and prove the Primitive Element Theorem. [You may use without proof the result that the multiplicative group of non-zero elements of a finite field is cyclic.]
(b) (6 marks) Prove that $\mathbb{Q}(\sqrt{3}, \sqrt{5})=\mathbb{Q}(\sqrt{3}+\sqrt{5})$.
(c) (4 marks) What is the degree of the minimum polynomial of $\sqrt{3}+$ $\sqrt{5}$ over the field \mathbb{Q} of rational numbers? [Briefly justify your answer. You may use, without proof, the fact that $\sqrt{5} \notin \mathbb{Q}(\sqrt{3})$. Note that you are not asked to find the minimum polynomial itself.]
(a) Bookwork.
(b) $\sqrt{3}+\sqrt{5} \in \mathbb{Q}(\sqrt{3}+\sqrt{5})$. But $\mathbb{Q}(\sqrt{3}+\sqrt{5})$ is by definition the smallest subfield of the field of complex number that contains $\sqrt{3}+\sqrt{5}$, and is contained in every other such subfield. Therefore $\mathbb{Q}(\sqrt{3}+\sqrt{5}) \subset \mathbb{R}(\sqrt{3}, \sqrt{5})$.
Let $\alpha=\sqrt{3}+\sqrt{5}$. Then $\alpha^{2}=8+2 \sqrt{15}$ and $\alpha^{3}=18 \sqrt{3}+14 \sqrt{5}$. Therefore $\sqrt{3}=\frac{1}{4}\left(\alpha^{3}-\alpha\right)$. It follows that $\sqrt{3} \in \mathbb{Q}(\alpha)$. But then $\sqrt{5} \in \mathbb{Q}(\alpha)$, as $\sqrt{5}=\alpha-\sqrt{3}$. It follows that $\mathbb{Q}(\sqrt{3}, \sqrt{5}) \subset$ $\mathbb{Q}(\sqrt{3}+\sqrt{5})$. We conclude that $\mathbb{Q}(\sqrt{3}+\sqrt{5})=\mathbb{R}(\sqrt{3}, \sqrt{5})$, as required.
(c) The minimum polynomial of $\sqrt{3}+\sqrt{5}$ of \mathbb{Q} is of degree 4. Indeed $\sqrt{5}$ is a root of the polynomial $x^{2}-5$, and the coefficients of this polynomial belong to \mathbb{Q}, and therefore belong to $\mathbb{Q}(\sqrt{3})$. Therefore the minimum polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{3})$ must divide $x^{2}-$ 5. But this minimum polynomial is not of degree 1 , since $\sqrt{5} \notin$ $\mathbb{Q}(\sqrt{3})$. Therefore $x^{2}-5$ is the minimum polynomial of $\sqrt{5}$ over $\mathbb{Q}(\sqrt{3})$, and thus $[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{3})]=2$. Also $x^{2}-3$ is the minumum polynomial of $\sqrt{3}$ over \mathbb{Q}, and therefore $[\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=2$. It follows from the Tower Law and (b) that

$$
\begin{aligned}
{[\mathbb{Q}(\sqrt{3}+\sqrt{5}): \mathbb{Q}] } & =[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}] \\
& =[\mathbb{Q}(\sqrt{3}, \sqrt{5}): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=4 .
\end{aligned}
$$

But the degree of this field extension is equal to the degree of the minimum polynomial of $\sqrt{3}+\sqrt{5}$ over \mathbb{Q}. The result follows.
6. (a) (3 marks) Let L: K be a field extension, and let f be a polynomial with coefficients in K. What is meant by saying that the polynomial f splits over L ? What is meant by saying that L is a splitting field for f over K ?
(b) (10 marks) Let K_{1} and K_{2} be fields, let $\sigma: K_{1} \rightarrow K_{2}$ be an isomorphism from K_{1} to K_{2}, let f be a polynomial with coefficients
in K_{1}, let $\sigma_{*}(f)$ be the polynomial with coefficients in K_{2} that corresponds to f under σ, and let L_{1} and L_{2} be splitting fields for f and $\sigma_{*}(f)$ over K_{1} and K_{2} respectively. Prove that there exists an isomorphism $\tau: L_{1} \rightarrow L_{2}$ which extends $\sigma: K_{1} \rightarrow K_{2}$.
(c) (2 marks) What is meant by saying that a field extension $L: K$ is normal?
(d) (5 marks) Determine which, if any, of the following field extensions are normal:-
(i) $\mathbb{Q}(\sqrt{2}): \mathbb{Q}$;
(ii) $\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}$;
(iii) $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}, i): \mathbb{Q}$.
[Briefly justify your answers. You may use without proof the result that any splitting field extension is a normal extension. Here $i^{2}=$ -1 , and $\sqrt[3]{2}$ denotes the unique positive real number ξ satisfying $\left.\xi^{3}=2.\right]$
(a) Bookwork.
(b) Bookwork.
(c) Bookwork.
(d) The field extension $\mathbb{Q}(\sqrt{2})$: \mathbb{Q} is normal, since $\mathbb{Q}(\sqrt{2})$ is a splitting field for the polynomial $x^{2}-2$ over \mathbb{Q}.
The field extension $\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}$ is not normal. An application of Eisenstein's criterion shows that the polynomial $x^{3}-2$ is irreducible over the field \mathbb{Q} of rational numbers. It has exactly one real root $\sqrt[3]{2}$. But $\mathbb{Q}(\sqrt[3]{2})$ is a subfield of the field of real numbers. Therefore the irreducible polynomial $x^{3}-2$ has a root in the field $\mathbb{Q}(\sqrt[3]{2})$ but does not split over this field.
The field extension $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}, i): \mathbb{Q}$ is normal. Indeed let $L=$ $\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}, i)$, and let $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. Then $\omega \in L$, and

$$
x^{3}-2=(x-\xi)(x-\omega \xi)\left(x-\omega^{2} \xi\right)
$$

where $\xi=\sqrt[3]{2}$. It follows from this that L is a splitting field for the polynomial $\left(x^{3}-2\right)\left(x^{2}-3\right)\left(x^{2}+1\right)$ over \mathbb{Q}, and therefore the extension $L: \mathbb{Q}$ is normal.
7. Let K be a subfield of the field of complex numbers that contains the complex number ω, where $\omega=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$. (Note that $\omega \neq 1, \omega^{3}=1$
and $1+\omega+\omega^{2}=0$.) Let L be an extension field of K with $[L: K]=3$, and let f be a cubic polynomial with coefficients in K that splits over L but not over K. Let α, β and γ denote the roots of f in L and let

$$
\lambda=\alpha+\omega \beta+\omega^{2} \gamma, \quad \mu=\alpha+\omega^{2} \beta+\omega \gamma .
$$

(a) (10 marks) Show that there exists a K-automorphism θ of L such that $\theta(\alpha)=\beta, \theta(\beta)=\gamma$ and $\theta(\gamma)=\alpha$. What are $\theta(\lambda)$ and $\theta(\mu)$?
(b) (5 marks) Explain why $\lambda^{3} \in K, \mu^{3} \in K$ and $\lambda \mu \in K$.
(c) (5 marks) Find formulae expressing α, β and γ in terms of ω, λ, μ and c, where $c=\alpha+\beta+\gamma$.
(a) If the polynomial splits over some subfield M of L then $[M: K]>1$ and $[M: K]$ divides $[L: K]$, and therefore $[M: K]=3$ and $M=L$. It follows from this that the polynomial f cannot split over any proper subfield of L that contains K, and therefore L is a splitting field for the polynomial f over K. It follows from standard theorems that the field extension $L: K$ is finite, normal and separable, and therefore $|\Gamma(L: K)|=[L: K]=3$.
Any group of order 3 is a cyclic group. Any element of the Galois group is determined by the corresponding permutation of the roots of the polynomial f. A generator φ of the Galois group must induce a permutation of $\{\alpha, \beta, \gamma\}$ that is over order 3 . Then either $\varphi(\alpha)=\beta, \varphi(\beta)=\gamma$ and $\varphi(\gamma)=\alpha$, in which case we can take $\theta=\varphi$, or else either $\varphi(\alpha)=\gamma, \varphi(\gamma)=\beta$ and $\varphi(\beta)=\alpha$, in which case we can take $\theta=\varphi^{2}$.
Now $\theta(\omega)=\omega$, since $\omega \in K$ and θ fixes all elements of the ground field K. It follows that

$$
\begin{aligned}
& \theta(\lambda)=\beta+\omega \gamma+\omega^{2} \alpha=\omega^{2} \lambda \\
& \theta(\mu)=\beta+\omega^{2} \gamma+\omega \alpha=\omega \mu
\end{aligned}
$$

(b) Now

$$
\begin{aligned}
& \theta\left(\lambda^{3}\right)=(\theta(\lambda))^{3}=\left(\omega^{2} \lambda\right)^{3}=\omega^{6} \lambda^{3}=\lambda^{3}, \\
& \theta\left(\mu^{3}\right)=(\theta(\mu))^{3}=(\omega \mu)^{3}=\omega^{3} \mu^{3}=\mu^{3},
\end{aligned}
$$

and

$$
\theta(\lambda \mu)=\theta(\lambda) \theta(\mu)=\left(\omega^{2} \lambda\right)(\omega \mu)=\omega^{3} \lambda \mu=\lambda \mu .
$$

Also θ generates the Galois group $\Gamma(L: K)$. Therefore λ^{3}, μ^{3} and $\lambda \mu$ belong to the fixed field of the Galois group $\Gamma(L: K)$. But this
fixed field is the ground field K, because the extension $L: K$ is a splitting field extension, and thus a Galois extension. Therefore $\lambda^{3} \in K, \mu^{3} \in K$ and $\lambda \mu \in K$.
(c)

$$
\begin{aligned}
c+\lambda+\mu & =3 \alpha+\left(1+\omega+\omega^{2}\right)(\beta+\gamma)=3 \alpha \\
c+\omega \lambda+\omega^{2} \mu & =3 \gamma+\left(1+\omega+\omega^{2}\right)(\alpha+\beta)=3 \gamma \\
c+\omega^{2} \lambda+\omega \mu & =3 \beta+\left(1+\omega+\omega^{2}\right)(\alpha+\gamma)=3 \beta
\end{aligned}
$$

Thus

$$
\alpha=\frac{1}{3}(c+\lambda+\mu), \beta=\frac{1}{3}\left(c+\omega^{2} \lambda+\omega \mu\right), \gamma=\frac{1}{3}\left(c+\omega \lambda+\omega^{2} \mu\right) .
$$

