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2 Rings and Polynomials

2.1 Rings, Integral Domains and Fields

Definition A ring consists of a set R on which are defined operations of
addition and multiplication satisfying the following axioms:

• x+y = y+x for all elements x and y of R (i.e., addition is commutative);

• (x+ y) + z = x+ (y+ z) for all elements x, y and z of R (i.e., addition
is associative);

• there exists an an element 0 of R (known as the zero element) with the
property that x+ 0 = x for all elements x of R;

• given any element x of R, there exists an element −x of R with the
property that x+ (−x) = 0;

• x(yz) = (xy)z for all elements x, y and z of R (i.e., multiplication is
associative);

• x(y + z) = xy + xz and (x+ y)z = xz + yz for all elements x, y and z
of R (the Distributive Law).

Lemma 2.1 Let R be a ring. Then x0 = 0 and 0x = 0 for all elements x of
R.

Proof The zero element 0 of R satisfies 0 + 0 = 0. Using the Distributive
Law, we deduce that x0 + x0 = x(0 + 0) = x0 and 0x+ 0x = (0 + 0)x = 0x.
Thus if we add −(x0) to both sides of the identity x0 + x0 = x0 we see that
x0 = 0. Similarly if we add −(0x) to both sides of the identity 0x+ 0x = 0x
we see that 0x = 0.

Lemma 2.2 Let R be a ring. Then (−x)y = −(xy) and x(−y) = −(xy) for
all elements x and y of R.

Proof It follows from the Distributive Law that xy+(−x)y = (x+(−x))y =
0y = 0 and xy + x(−y) = x(y + (−y)) = x0 = 0. Therefore (−x)y = −(xy)
and x(−y) = −(xy).

A subset S of a ring R is said to be a subring of R if 0 ∈ S, a + b ∈ S,
−a ∈ S and ab ∈ S for all a, b ∈ S.

A ring R is said to be commutative if xy = yx for all x, y ∈ R. Not every
ring is commutative: an example of a non-commutative ring is provided by
the ring of n× n matrices with real or complex coefficients when n > 1.
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A ring R is said to be unital if it possesses a (necessarily unique) non-zero
multiplicative identity element 1 satisfying 1x = x = x1 for all x ∈ R.

Definition A unital commutative ring R is said to be an integral domain if
the product of any two non-zero elements of R is itself non-zero.

Definition A field consists of a set K on which are defined operations of
addition and multiplication satisfying the following axioms:

• x+y = y+x for all elements x and y ofK (i.e., addition is commutative);

• (x+ y) + z = x+ (y+ z) for all elements x, y and z of K (i.e., addition
is associative);

• there exists an an element 0 of K known as the zero element with the
property that x+ 0 = x for all elements x of K;

• given any element x of K, there exists an element −x of K with the
property that x+ (−x) = 0;

• xy = yx for all elements x and y of K (i.e., multiplication is commuta-
tive);

• x(yz) = (xy)z for all elements x, y and z of K (i.e., multiplication is
associative);

• there exists a non-zero element 1 of K with the property that 1x = x
for all elements x of K;

• given any non-zero element x of K, there exists an element x−1 of K
with the property that xx−1 = 1;

• x(y + z) = xy + xz and (x+ y)z = xz + yz for all elements x, y and z
of K (the Distributive Law).

An examination of the relevant definitions shows that a unital commuta-
tive ring R is a field if and only if, given any non-zero element x of R, there
exists an element x−1 of R such that xx−1 = 1. Moreover a ring R is a field
if and only if the set of non-zero elements of R is an Abelian group with
respect to the operation of multiplication.

Lemma 2.3 A field is an integral domain.
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Proof A field is a unital commutative ring. Let x and y be non-zero elements
of a field K. Then there exist elements x−1 and y−1 of K such that xx−1 = 1
and yy−1 = 1. Then xyy−1x−1 = 1. It follows that xy 6= 0, since 0(y−1x−1) =
0 and 1 6= 0.

The set Z of integers is an integral domain with respect to the usual
operations of addition and multiplication. The sets Q, R and C of rational,
real and complex numbers are fields.

2.2 Ideals

Definition Let R be a ring. A subset I of R is said to be an ideal of R if
0 ∈ I, a + b ∈ I, −a ∈ I, ra ∈ I and ar ∈ I for all a, b ∈ I and r ∈ R. An
ideal I of R is said to be a proper ideal of R if I 6= R.

Note that an ideal I of a unital ring R is proper if and only if 1 6∈ I.
Indeed if 1 ∈ I then r ∈ I for all r ∈ R, since r = r1.

Lemma 2.4 A unital commutative ring R is a field if and only if the only
ideals of R are {0} and R.

Proof Suppose that R is a field. Let I be a non-zero ideal of R. Then
there exists x ∈ I satisfying x 6= 0. Moreover there exists x−1 ∈ R satisfying
xx−1 = 1 = x−1x. Therefore 1 ∈ I, and hence I = R. Thus the only ideals
of R are {0} and R.

Conversely, suppose that R is a unital commutative ring with the property
that the only ideals of R are {0} and R. Let x be a non-zero element of R,
and let Rx denote the subset of R consisting of all elements of R that are of
the form rx for some r ∈ R. It is easy to verify that Rx is an ideal of R. (In
order to show that yr ∈ Rx for all y ∈ Rx and r ∈ R, one must use the fact
that the ring R is commutative.) Moreover Rx 6= {0}, since x ∈ Rx. We
deduce that Rx = R. Therefore 1 ∈ Rx, and hence there exists some element
x−1 of R satisfying x−1x = 1. This shows that R is a field, as required.

The intersection of any collection of ideals of a ring R is itself an ideal
of R. For if a and b are elements of R that belong to all the ideals in the
collection, then the same is true of 0, a+ b, −a, ra and ar for all r ∈ R.

Let X be a subset of the ring R. The ideal of R generated by X is defined
to be the intersection of all the ideals of R that contain the set X. Note that
this ideal is well-defined and is the smallest ideal of R containing the set X
(i.e., it is contained in every other ideal that contains the set X).
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We denote by (f1, f2, . . . , fk) the ideal of R generated by any finite subset
{f1, f2, . . . , fk} of R. We say that an ideal I of the ring R is finitely generated
if there exists a finite subset of I which generates the ideal I.

Lemma 2.5 Let R be a unital commutative ring, and let X be a subset of
R. Then the ideal generated by X coincides with the set of all elements of
R that can be expressed as a finite sum of the form r1x1 + r2x2 + · · ·+ rkxk,
where x1, x2, . . . , xk ∈ X and r1, r2, . . . , rk ∈ R.

Proof Let I be the subset of R consisting of all these finite sums. If J is any
ideal of R which contains the set X then J must contain each of these finite
sums, and thus I ⊂ J . Let a and b be elements of I. It follows immediately
from the definition of I that 0 ∈ I, a + b ∈ I, −a ∈ I, and ra ∈ I for all
r ∈ R. Also ar = ra, since R is commutative, and thus ar ∈ I. Thus I
is an ideal of R. Moreover X ⊂ I, since the ring R is unital and x = 1x
for all x ∈ X. Thus I is the smallest ideal of R containing the set X, as
required.

Each integer n generates an ideal nZ of the ring Z of integers. This ideal
consists of those integers that are divisible by n.

Lemma 2.6 Every ideal of the ring Z of integers is generated by some non-
negative integer n.

Proof The zero ideal is of the required form with n = 0. Let I be some
non-zero ideal of Z. Then I contains at least one strictly positive integer
(since −m ∈ I for all m ∈ I). Let n be the smallest strictly positive integer
belonging to I. If j ∈ I then we can write j = qn + r for some integers q
and r with 0 ≤ r < n. Now r ∈ I, since r = j − qn, j ∈ I and qn ∈ I.
But 0 ≤ r < n, and n is by definition the smallest strictly positive integer
belonging to I. We conclude therefore that r = 0, and thus j = qn. This
shows that I = nZ, as required.

2.3 Quotient Rings and Homomorphisms

Let R be a ring and let I be an ideal of R. If we regard R as an Abelian
group with respect to the operation of addition, then the ideal I is a (normal)
subgroup of R, and we can therefore form a corresponding quotient group
R/I whose elements are the cosets of I in R. Thus an element of R/I is of
the form I +x for some x ∈ R, and I +x = I +x′ if and only if x−x′ ∈ I. If
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x, x′, y and y′ are elements of R satisfying I + x = I + x′ and I + y = I + y′

then

(x+ y)− (x′ + y′) = (x− x′) + (y − y′),
xy − x′y′ = xy − xy′ + xy′ − x′y′ = x(y − y′) + (x− x′)y′.

But x − x′ and y − y′ belong to I, and also x(y − y′) and (x − x′)y′ belong
to I, since I is an ideal. It follows that (x + y) − (x′ + y′) and xy − x′y′

both belong to I, and thus I + x + y = I + x′ + y′ and I + xy = I + x′y′.
Therefore the quotient group R/I admits well-defined operations of addition
and multiplication, given by

(I + x) + (I + y) = I + x+ y, (I + x)(I + y) = I + xy

for all I+x ∈ R/I and I+y ∈ R/I . One can readily verify that R/I is a ring
with respect to these operations. We refer to the ring R/I as the quotient of
the ring R by the ideal I.

Example Let n be an integer satisfying n > 1. The quotient Z/nZ of the
ring Z of integers by the ideal nZ generated by n is the ring of congruence
classes of integers modulo n. This ring has n elements, and is a field if and
only if n is a prime number.

Definition A function ϕ:R → S from a ring R to a ring S is said to be a
homomorphism (or ring homomorphism) if and only if ϕ(x+y) = ϕ(x)+ϕ(y)
and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ R. If in addition the rings R and S are
unital then a homomorphism ϕ:R→ S is said to be unital if ϕ(1) = 1 (i.e.,
ϕ maps the identity element of R onto that of S).

Let R and S be rings, and let ϕ:R→ S be a ring homomorphism. Then
the kernel kerϕ of the homomorphism ϕ is an ideal of R, where

kerϕ = {x ∈ R : ϕ(x) = 0}.

The image ϕ(R) of the homomorphism is a subring of S; however it is not
in general an ideal of S.

An ideal I of a ring R is the kernel of the quotient homomorphism that
sends x ∈ R to the coset I + x.

Definition An isomorphism ϕ:R → S between rings R and S is a ho-
momorphism that is also a bijection between R and S. The inverse of an
isomorphism is itself an isomorphism. Two rings are said to be isomorphic
if there is an isomorphism between them.
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The verification of the following result is a straightforward exercise.

Proposition 2.7 Let ϕ:R → S be a homomorphism from a ring R to a
ring S, and let I be an ideal of R satisfying I ⊂ kerϕ. Then there exists a
unique homomorphism ϕ:R/I → S such that ϕ(I + x) = ϕ(x) for all x ∈ R.
Moreover ϕ:R/I → S is injective if and only if I = kerϕ.

Corollary 2.8 Let ϕ:R→ S be ring homomorphism. Then ϕ(R) is isomor-
phic to R/ kerϕ.

2.4 The Characteristic of a Ring

Let R be a ring, and let r ∈ R. We may define n.r for all natural numbers n
by recursion on n so that 1.r = r and n.r = (n− 1).r + r for all n > 0. We
define also 0.r = 0 and (−n).r = −(n.r) for all natural numbers n. Then

(m+ n).r = m.r + n.r, n.(r + s) = n.r + n.s,

(mn).r = m.(n.r), (m.r)(n.s) = (mn).(rs)

for all integers m an n and for all elements r and s of R.
In particular, suppose that R is a unital ring. Then the set of all integers n

satisfying n.1 = 0 is an ideal of Z. Therefore there exists a unique non-
negative integer p such that pZ = {n ∈ Z : n.1 = 0} (see Lemma 2.6). This
integer p is referred to as the characteristic of the ring R, and is denoted by
charR.

Lemma 2.9 Let R be an integral domain. Then either charR = 0 or else
charR is a prime number.

Proof Let p = charR. Clearly p 6= 1. Suppose that p > 1 and p = jk, where
j and k are positive integers. Then (j.1)(k.1) = (jk).1 = p.1 = 0. But R is
an integral domain. Therefore either j.1 = 0, or k.1 = 0. But if j.1 = 0 then
p divides j and therefore j = p. Similarly if k.1 = 0 then k = p. It follows
that p is a prime number, as required.

2.5 Polynomial Rings

Let R be a unital commutative ring. The set of all polynomials

c0 + c1x+ c2x
2 + · · ·+ cnx

n

in an indeterminate x with coefficients c0, . . . , cn in the ring R themselves
constitute a ring, which we shall denote by R[x]. If the coefficient cn of
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highest power of x is non-zero then the polynomial is said to be of degree n,
and the coefficient cn is referred to as the leading coefficient of the polynomial.
The polynomial is said to be monic if the leading coefficient cn is equal to
the multiplicative identity element 1 of the ring R.

Two polynomials with coefficients in the ring R are equal if and only if
they are of the same degree and corresponding coefficients are equal. Poly-
nomials may be added, subtracted and multiplied in the usual fashion.

We now consider various properties of polynomials whose coefficients be-
long to a field K (such as the field of rational numbers, real numbers or
complex numbers).

Lemma 2.10 Let K be a field, and let f ∈ K[x] be a non-zero polynomial
with coefficients in K. Then, given any polynomial h ∈ K[x], there exist
unique polynomials q and r in K[x] such that h = fq + r and either r = 0
or else deg r < deg f .

Proof If deg h < deg f then we may take q = 0 and r = h. In general we
prove the existence of q and r by induction on the degree deg h of h. Thus
suppose that deg h ≥ deg f and that any polynomial of degree less than deg h
can be expressed in the required form. Now there is some element c of K
for which the polynomials h(x) and cf(x) have the same leading coefficient.
Let h1(x) = h(x) − cxmf(x), where m = deg h − deg f . Then either h1 = 0
or deg h1 < deg h. The inductive hypothesis then ensures the existence
of polynomials q1 and r such that h1 = fq1 + r and either r = 0 or else
deg r < deg f . But then h = fq + r, where q(x) = cxm + q1(x). We now
verify the uniqueness of q and r. Suppose that fq + r = fq + r, where
q, r ∈ K[x] and either r = 0 or deg r < deg f . Then (q − q)f = r − r. But
deg((q − q)f) ≥ deg f whenever q 6= q, and deg(r − r) < deg f whenever
r 6= r. Therefore the equality (q − q)f = r − r cannot hold unless q = q and
r = r. This proves the uniqueness of q and r.

Any polynomial f with coefficients in a field K generates an ideal (f)
of the polynomial ring K[x] consisting of all polynomials in K[x] that are
divisible by f .

Lemma 2.11 Let K be a field, and let I be an ideal of the polynomial ring
K[x]. Then there exists f ∈ K[x] such that I = (f), where (f) denotes the
ideal of K[x] generated by f .

Proof If I = {0} then we can take f = 0. Otherwise choose f ∈ I such
that f 6= 0 and the degree of f does not exceed the degree of any non-zero
polynomial in I. Then, for each h ∈ I, there exist polynomials q and r in K[x]
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such that h = fq + r and either r = 0 or else deg r < deg f . (Lemma 2.10).
But r ∈ I, since r = h− fq and h and f both belong to I. The choice of f
then ensures that r = 0 and h = qf . Thus I = (f).

Definition Polynomials f1, f2, . . . , fk with coefficients in some field K. are
said to be coprime if there is no non-constant polynomial that divides all of
them.

Theorem 2.12 Let f1, f2, . . . , fk be coprime polynomials with coefficients in
some field K. Then there exist polynomials g1, g2, . . . , gk with coefficients in
K such that

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fk(x)gk(x) = 1.

Proof Let I be the ideal in K[x] generated by f1, f2, . . . , fk. It follows from
Lemma 2.11 that the ideal I is generated by some polynomial d. Then d
divides all of f1, f2, . . . , fk and is therefore a constant polynomial, since these
polynomials are coprime. It follows that I = K[x]. But the ideal I of K[x]
generated by f1, f2, . . . , fk coincides with the subset of K[x] consisting of all
polynomials that may be represented as finite sums of the form

f1(x)g1(x) + f2(x)g2(x) + · · ·+ fk(x)gk(x)

for some polynomials g1, g2, . . . , gk. It follows that the constant polynomial
with value 1 may be expressed as a sum of this form, as required.

Definition A non-constant polynomial f with coefficients in a field K is said
to be irreducible over K if it is not divisible by any non-constant polynomial
of lower degree with coefficients in K.

Any polynomial with coefficients in a field K may be factored as a product
of irreducible polynomials. This is easily proved by induction on the degree
of the polynomial, for if a non-constant polynomial is not itself irreducible,
then it can be factored as a product of polynomials of lower degree.

Lemma 2.13 Let K be a field. Then the ring K[x] of polynomials with
coefficients in K contains infinitely many irreducible polynomials.

Proof Let f1, f2, . . . , fk ∈ K[x] be irreducible polynomials, and let

g = f1f2 · · · fk + 1.

Then g is not divisible by f1, f2, . . . , fk, and therefore no irreducible factor
of g is divisible by any of f1, f2, . . . , fk. It follows that K[x] must contain
irreducible polynomials distinct from f1, f2, . . . , fk. Thus the number of irre-
ducible polynomials in K[x] cannot be finite.
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The proof of Lemma 2.13 is a direct analogue of Euclid’s proof of the
existence of infinitely many prime numbers.

Proposition 2.14 Let f , g and h be polynomials with coefficients in some
field K. Suppose that f is irreducible over K and that f divides the product
gh. Then either f divides g or else f divides h.

Proof Suppose that f does not divide g. We must show that f divides
h. Now the only polynomials that divide f are constant polynomials and
multiples of f . No multiple of f divides g. Therefore the only polynomials
that divide both f and g are constant polynomials. Thus f and g are coprime.
It follows from Proposition 2.12 that there exist polynomials u and v with
coefficients in K such that 1 = ug+ vf . Then h = ugh+ vfh. But f divides
ugh+ vfh, since f divides gh. It follows that f divides h, as required.

Proposition 2.15 Let K be a field, and let (f) be the ideal of K[x] generated
by an irreducible polynomial f with coefficients in K. Then K[x]/(f) is a
field.

Proof Let I = (f). Then the quotient ring K[x]/I is commutative and has
a multiplicative identity element I+1. Let g ∈ K[x]. Suppose that I+g 6= I.
Now the only factors of f are constant polynomials and constant multiples
of f , since f is irreducible. But no constant multiple of f can divide g, since
g 6∈ I. It follows that the only common factors of f and g are constant
polynomials. Thus f and g are coprime. It follows from Proposition 2.12
that there exist polynomials h, k ∈ K[x] such that fh + gk = 1. But then
(I+k)(I+g) = I+1 in K[x]/I, since fh ∈ I. Thus I+k is the multiplicative
inverse of I+g in K[x]/I. We deduce that every non-zero element of K[x]/I
is invertible, and thus K[x]/I is a field, as required.

2.6 Gauss’s Lemma

We shall show that a polynomial with integer coefficients is irreducible over
Q if and only if it cannot be expressed as a product of polynomials of lower
degree with integer coefficients.

Definition A polynomial with integer coefficients is said to be primitive if
there is no prime number that divides all the coefficients of the polynomial

Lemma 2.16 (Gauss’s Lemma) Let g and h be polynomials with integer
coefficients. If g and h are both primitive then so is gh.
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Proof Let g(x) = b0 + b1x+ b2x
2 + · · ·+ brx

r and h(x) = c0 + c1x+ c2x
2 +

· · · + csx
s, and let g(x)h(x) = a0 + a1x + a2x

2 + · · · + ar+sx
r+s. Let p be a

prime number. Then the polynomials g and h must both have at least one
coefficient that is not divisible by p. Let j and k be the smallest values of i
for which p does not divide bi and ci respectively. Then aj+k−bjck is divisible

by p, since aj+k − bjck =
j−1∑
i=0

bicj+k−i +
k−1∑
i=0

bj+k−ici, where p divides bi for all

i < j and p divides ci for all i < k. But p does not divide bjck since p does
not divide either bj or ck. Therefore p does not divide the coefficient aj+k of
gh. This shows that the polynomial gh is primitive, as required.

Proposition 2.17 A polynomial with integer coefficients is irreducible over
the field Q of rational numbers if and only if it cannot be factored as a product
of polynomials of lower degree with integer coefficients.

Proof Let f be a polynomial with integer coefficients. If f is irreducible
over Q then f clearly cannot be factored as a product of polynomials of
lower degree with integer coefficients. Conversely suppose that f cannot be
factored in this way. Let f(x) = g(x)h(x), where g and h are polynomials
with rational coefficients. Then there exist positive integers r and s such that
the polynomials rg(x) and sh(x) have integer coefficients. Let the positive
integers u and v be the highest common factors of the coefficients of the
polynomials rg(x) and sh(x) respectively. Then rg(x) = ug∗(x) and sh(x) =
vh∗(x), where g∗ and h∗ are primitive polynomials with integer coefficients.
Then (rs)f(x) = (uv)g∗(x)h∗(x). We now show that f(x) = mg∗(x)h∗(x)
for some integer m. Let l be the smallest divisor of rs such that lf(x) =
mg∗(x)h∗(x) for some integer m. We show that l = 1. Suppose that it
were the case that l > 1. Then there would exist a prime factor p of l.
Now p could not divide m, since otherwise (l/p)f(x) = (m/p)g∗(x)h∗(x),
which contradicts the definition of l. Theorefore p would have to divide each
coefficient of g∗(x)h∗(x), which is impossible, since it follows from Gauss’s
Lemma (Lemma 2.16) that the product g∗h∗ of the primitive polynomials
g∗ and h∗ is itself a primitive polynomial. Therefore l = 1 and f(x) =
mg∗(x)h∗(x). Now f does not factor as a product of polynomials of lower
degree with integer coefficients. Therefore either deg f = deg g∗ = deg g, or
else deg f = deg h∗ = deg h, Thus f is irreducible over Q, as required.

2.7 Eisenstein’s Irreducibility Criterion

Proposition 2.18 (Eisenstein’s Irreducibility Criterion) Let

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n
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be a polynomial of degree n with integer coefficients, and let p be a prime
number. Suppose that

• p does not divide an,

• p divides a0, a1, . . . , an−1,

• p2 does not divide a0.

Then the polynomial f is irreducible over the field Q of rational numbers.

Proof Suppose that f(x) = g(x)h(x), where g and h are polynomials with
integer coefficients. Let g(x) = b0 + b1x + b2x

2 + · · · + brx
r and h(x) =

c0 +c1x+c2x
2 + · · ·+csxs. Then a0 = b0c0. Now a0 is divisible by p but is not

divisible by p2. Therefore exactly one of the coefficients b0 and c0 is divisible
by p. Suppose that p divides b0 but does not divide c0. Now p does not divide
all the coefficients of g(x), since it does not divide all the coefficients of f(x).
Let j be the smallest value of i for which p does not divide bi. Then p divides

aj − bjc0, since aj − bjc0 =
j−1∑
i=0

bicj−i and bi is divisible by p when i < j. But

bjc0 is not divisible by p, since p is prime and neither bj nor c0 is divisible by
p. Therefore aj is not divisible by p, and hence j = n and deg g ≥ n = deg f .
Thus deg g = deg f and deg h = 0. Thus the polynomial f does not factor
as a product of polynomials of lower degree with integer coefficients, and
therefore f is irreducible over Q (Proposition 2.17).
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