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1 Topics in Group Theory

1.1 Groups

A binary operation ∗ on a set G associates to elements x and y of G a third
element x ∗ y of G. For example, addition and multiplication are binary
operations of the set of all integers.

Definition A group G consists of a set G together with a binary operation ∗
for which the following properties are satisfied:

• (x ∗ y) ∗ z = x ∗ (y ∗ z) for all elements x, y, and z of G (the Associative
Law);

• there exists an element e of G (known as the identity element of G)
such that e ∗ x = x = x ∗ e, for all elements x of G;

• for each element x of G there exists an element x′ of G (known as the
inverse of x) such that x ∗ x′ = e = x′ ∗ x (where e is the identity
element of G).

The order |G| of a finite group G is the number of elements of G.
A group G is Abelian (or commutative) if x ∗ y = y ∗ x for all elements x

and y of G.

One usually adopts multiplicative notation for groups, where the product
x ∗ y of two elements x and y of a group G is denoted by xy. The associative
property then requires that (xy)z = x(yz) for all elements x, y and z of G.
The identity element is often denoted by e (or by eG when it is necessary
to specify explicitly the group to which it belongs), and the inverse of an
element x of G is then denoted by x−1.

It is sometimes convenient or customary to use additive notation for cer-
tain groups. Here the group operation is denoted by +, the identity element
of the group is denoted by 0, the inverse of an element x of the group is de-
noted by −x. By convention, additive notation is rarely used for non-Abelian
groups. When expressed in additive notation the axioms for a Abelian group
require that (x+ y) + z = x+ (y + z), x+ y = y + x, x+ 0 = 0 + x = x and
x+ (−x) = (−x) + x = 0 for all elements x, y and z of the group.

We shall usually employ multiplicative notation when discussing general
properties of groups. Additive notation will be employed for certain groups
(such as the set of integers with the operation of addition) where this notation
is the natural one to use.
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1.2 Examples of Groups

The sets of integers, rational numbers, real numbers and complex numbers
are Abelian groups, where the group operation is the operation of addition.

The sets of non-zero rational numbers, non-zero real numbers and non-
zero complex numbers are also Abelian groups, where the group operation is
the operation of multiplication.

For each positive integer m the set Zm of congruence classes of integers
modulo m is a group, where the group operation is addition of congruence
classes.

For each positive integer m the set Z∗m of congruence classes modulo m of
integers coprime to m is a group, where the group operation is multiplication
of congruence classes.

In particular, for each prime number p the set Z∗p of congruence classes
modulo p of integers not divisible by p is a group, where the group operation
is multiplication of congruence classes.

For each positive integer n the set of all nonsingular n× n matrices is a
group, where the group operation is matrix multiplication. These groups are
not Abelian when n ≥ 2.

Let En denote n-dimensional Euclidean space, so that E2 denotes the
Euclidean plane, and E3 denotes three-dimensional Euclidean space. A geo-
metrical figure may be represented as a subset S of En. A symmetry of S is a
transformation T :En → En of En which sends straight lines to straight lines,
preserves all lengths and angles, and has the property that T (S) = S. The
collection of all symmetries of a geometrical figure is a group, the symmetry
group of S, the group operation being that of composition of transformations.

For any natural number n greater than 2, the the dihedral group D2n of
order 2n is defined to be the symmetry group of a regular n-sided polygon
in the Euclidean plane. It consists of rotations though an angle of 2πj/n
about the centre of the polygon for j = 0, 1, 2, . . . , n − 1, together with the
reflections in the n axes of symmetry of the polygon.

The symmetries of a rectangle that is not a square constitute a group of
order 4. This group consists of the identity transformation, reflection in the
axis of symmetry joining the midpoints of the two shorter sides, reflection
in the axis of symmetry joining the two longer sides, and rotation though
an angle of π radians (180◦). If I denotes the identity transformation, A
and B denote the reflections in the two axes of symmetry, and C denotes
the rotation through π radians then A2 = B2 = C2 = I, AB = BA = C,
AC = CA = B and BC = CB = A. This group is Abelian: it is often
referred to as the Klein 4-group (or, in German, Kleinsche Viergruppe).

The symmetries of a regular tetrahedron in 3-dimensional space constitute
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a group. Any permutation of the vertices of the tetrahedron can be effected
by an appropriate symmetry of the tetrahedron. Moreover each symmetry is
completely determined by the permutation of the vertices which it induces.
Therefore the group of symmetries of a regular tetrahedron is of order 24,
since there are 24 permutations of a set with four elements. It turns out that
this group is non-Abelian.

1.3 Elementary Properties of Groups

In what follows, we describe basic properties of a group G, using multiplica-
tive notation and denoting the identity element of the group by the letter e.

Lemma 1.1 A group G has exactly one identity element e satisfying ex =
x = xe for all x ∈ G.

Proof Suppose that f is an element of G with the property that fx = x for
all elements x of G. Then in particular f = fe = e. Similarly one can show
that e is the only element of G satisfying xe = x for all elements x of G.

Lemma 1.2 An element x of a group G has exactly one inverse x−1.

Proof We know from the axioms that the group G contains at least one
element x−1 which satisfies xx−1 = e and x−1x = e. If z is any element of
G which satisfies xz = e then z = ez = (x−1x)z = x−1(xz) = x−1e = x−1.
Similarly if w is any element of G which satisfies wx = e then w = x−1. In
particular we conclude that the inverse x−1 of x is uniquely determined, as
required.

Lemma 1.3 Let x and y be elements of a group G. Then (xy)−1 = y−1x−1.

Proof It follows from the group axioms that

(xy)(y−1x−1) = x(y(y−1x−1)) = x((yy−1)x−1) = x(ex−1) = xx−1 = e.

Similarly (y−1x−1)(xy) = e, and thus y−1x−1 is the inverse of xy, as re-
quired.

Note in particular that (x−1)−1 = x for all elements x of a group G, since
x has the properties that characterize the inverse of the inverse x−1 of x.

Given an element x of a group G, we define xn for each positive integer n
by the requirement that x1 = x and xn = xn−1x for all n > 1. We also define
x0 = e, where e is the identity element of the group, and we define x−n to be
the inverse of xn for all positive integers n.
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Theorem 1.4 Let x be an element of a group G. Then xm+n = xmxn and
xmn = (xm)n for all integers m and n.

Proof The identity xm+n = xmxn clearly holds when m = 0 and when n = 0.
The identity xm+n = xmxn can be proved for all positive integers m and n by
induction on n. The identity when m and n are both negative then follows
from the identity x−m−n = x−nx−m on taking inverses. The result when m
and n have opposite signs can easily be deduced from that where m and n
both have the same sign.

The identity xmn = (xm)n follows immediately from the definitions when
n = 0, 1 or −1. The result when n is positive can be proved by induction on
n. The result when n is negative can then be obtained on taking inverses.

If additive notation is employed for an Abelian group then the notation
‘xn’ is replaced by ‘nx’ for all integers n and elements x of the group. The
analogue of Theorem 1.4 then states that (m+n)x = mx+nx and (mn)x =
m(n(x)) for all integers m and n.

The associative law may be generalized to products of four or more ele-
ments of a group.

Example Given four elements x1, x2, x3 and x4 of a group, the products

((x1x2)x3)x4, (x1x2)(x3x4), (x1(x2x3))x4, x1((x2x3)x4), x1(x2(x3x4))

all have the same value. (Note that x1x2x3x4 is by definition the value of the
first of these expressions.)

Two expressions, each specifying a finite product of elements of a groupG,
determine the same element of G if the same elements of G occur in both
expressions, and in the same order. This result can be proved by induction
on the number of elements of G making up such a product.

1.4 Subgroups

Definition Let G be a group, and let H be a subset of G. We say that H
is a subgroup of G if the following conditions are satisfied:

• the identity element of G is an element of H;

• the product of any two elements of H is itself an element of H;

• the inverse of any element of H is itself an element of H.

A subgroup H of G is said to be proper if H 6= G.
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Lemma 1.5 Let x be an element of a group G. Then the set of all elements
of G that are of the form xn for some integer n is a subgroup of G.

Proof Let H = {xn : n ∈ Z}. Then the identity element belongs to H, since
it is equal to x0. The product of two elements of H is itself an element of
H, since xmxn = xm+n for all integers m and n (see Theorem 1.4). Also the
inverse of an element of H is itself an element of H since (xn)−1 = x−n for
all integers n. Thus H is a subgroup of G, as required.

Definition Let x be an element of a group G. The order of x is the smallest
positive integer n for which xn = e. The subgroup generated by x is the
subgroup consisting of all elements of G that are of the form xn for some
integer n.

Lemma 1.6 Let H and K be subgroups of a group G. Then H ∩K is also
a subgroup of G.

Proof The identity element of G belongs to H ∩K since it belongs to the
subgroups H and K. If x and y are elements of H ∩K then xy is an element
of H (since x and y are elements of H), and xy is an element of K, and
therefore xy is an element of H ∩K. Also the inverse x−1 of an element x of
H ∩K belongs to H and to K and thus belongs to H ∩K, as required.

More generally, the intersection of any collection of subgroups of a given
group is itself a subgroup of that group.

1.5 Cyclic Groups

Definition A group G is said to be cyclic, with generator x, if every element
of G is of the form xn for some integer n.

Example The group Z of integers under addition is a cyclic group, generated
by 1.

Example Let n be a positive integer. The set Zn of congruence classes of
integers modulo n is a cyclic group of order n with respect to the operation
of addition.

Example The group of all rotations of the plane about the origin through an
integer multiple of 2π/n radians is a cyclic group of order n for all integers n.
This group is generated by an anticlockwise rotation through an angle of
2π/n radians.
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1.6 Cosets and Lagrange’s Theorem

Definition Let H be a subgroup of a group G. A left coset of H in G is a
subset of G that is of the form xH, where x ∈ G and

xH = {y ∈ G : y = xh for some h ∈ H}.

Similarly a right coset of H in G is a subset of G that is of the form Hx,
where x ∈ G and

Hx = {y ∈ G : y = hx for some h ∈ H}.

Note that a subgroup H of a group G is itself a left coset of H in G.

Lemma 1.7 Let H be a subgroup of a group G. Then the left cosets of H
in G have the following properties:—

(i) x ∈ xH for all x ∈ G;

(ii) if x and y are elements of G, and if y = xa for some a ∈ H, then
xH = yH;

(iii) if x and y are elements of G, and if xH ∩ yH is non-empty then xH =
yH.

Proof Let x ∈ G. Then x = xe, where e is the identity element of G. But
e ∈ H. It follows that x ∈ xH. This proves (i).

Let x and y be elements of G, where y = xa for some a ∈ H. Then
yh = x(ah) and xh = y(a−1h) for all h ∈ H. Moreover ah ∈ H and a−1h ∈ H
for all h ∈ H, since H is a subgroup of G. It follows that yH ⊂ xH and
xH ⊂ yH, and hence xH = yH. This proves (ii).

Finally suppose that xH ∩ yH is non-empty for some elements x and y
of G. Let z be an element of xH ∩ yH. Then z = xa for some a ∈ H, and
z = yb for some b ∈ H. It follows from (ii) that zH = xH and zH = yH.
Therefore xH = yH. This proves (iii).

Lemma 1.8 Let H be a finite subgroup of a group G. Then each left coset
of H in G has the same number of elements as H.

Proof Let H = {h1, h2, . . . , hm}, where h1, h2, . . . , hm are distinct, and let x
be an element of G. Then the left coset xH consists of the elements xhj for
j = 1, 2, . . . ,m. Suppose that j and k are integers between 1 and m for which
xhj = xhk. Then hj = x−1(xhj) = x−1(xhk) = hk, and thus j = k, since
h1, h2, . . . , hm are distinct. It follows that the elements xh1, xh2, . . . , xhm are
distinct. We conclude that the subgroup H and the left coset xH both have
m elements, as required.
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Theorem 1.9 (Lagrange’s Theorem) Let G be a finite group, and let H be
a subgroup of G. Then the order of H divides the order of G.

Proof Each element of G belongs to at least one left coset of H in G, and
no element can belong to two distinct left cosets of H in G (see Lemma 1.7).
Therefore every element of G belongs to exactly one left coset of H. Moreover
each left coset of H contains |H| elements (Lemma 1.8). Therefore |G| =
n|H|, where n is the number of left cosets of H in G. The result follows.

Definition Let H be a subgroup of a group G. If the number of left cosets
of H in G is finite then the number of such cosets is referred to as the index
of H in G, denoted by [G:H].

The proof of Lagrange’s Theorem shows that the index [G:H] of a sub-
group H of a finite group G is given by [G:H] = |G|/|H|.

Corollary 1.10 Let x be an element of a finite group G. Then the order of
x divides the order of G.

Proof Let H be the set of all elements of G that are of the form xn for some
integer n. Then H is a subgroup of G (see Lemma 1.5), and the order of
H is the order of x. But the order of H divides G by Lagrange’s Theorem
(Theorem 1.9). The result follows.

Corollary 1.11 Any finite group of prime order is cyclic.

Proof Let G be a group of prime order, and let x be some element of G
that is not the identity element. Then the order of x is greater than one and
divides the order of G. But then the order of x must be equal to the order
of G, since the latter is a prime number. Thus G is a cyclic group generated
by x, as required.

1.7 Normal Subgroups and Quotient Groups

Let A and B be subsets of a group G. The product AB of the sets A and B
is defined by

AB = {xy : x ∈ A and y ∈ B}.

We denote {x}A and A{x} by xA and Ax, for all elements x of G and
subsets A of G. The Associative Law for multiplication of elements of G
ensures that (AB)C = A(BC) for all subsets A, B and C of G. We can
therefore use the notation ABC to denote the products (AB)C and A(BC);
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and we can use analogous notation to denote the product of four or more
subsets of G.

If A, B and C are subsets of a group G, and if A ⊂ B then clearly
AC ⊂ BC and CA ⊂ CB.

Note that if H is a subgroup of the group G and if x is an element of G
then xH is the left coset of H in G that contains the element x. Similarly
Hx is the right coset of H in G that contains the element x.

If H is a subgroup of G then HH = H. Indeed HH ⊂ H, since the
product of two elements of a subgroup H is itself an element of H. Also
H ⊂ HH since h = eh for any element h of H, where e, the identity element
of G, belongs to H.

Definition A subgroup N of a group G is said to be a normal subgroup of
G if xnx−1 ∈ N for all n ∈ N and x ∈ G.

The notation ‘N / G’ signifies ‘N is a normal subgroup of G’.

Definition A non-trivial group G is said to be simple if the only normal
subgroups of G are the whole of G and the trivial subgroup {e} whose only
element is the identity element e of G.

Lemma 1.12 Every subgroup of an Abelian group is a normal subgroup.

Proof Let N be a subgroup of an Abelian group G. Then

xnx−1 = (xn)x−1 = (nx)x−1 = n(xx−1) = ne = n

for all n ∈ N and x ∈ G, where e is the identity element of G. The result
follows.

Example Let S3 be the group of permutations of the set {1, 2, 3}, and let
H be the subgroup of S3 consisting of the identity permutation and the
transposition (1 2). Then H is not normal in G, since (2 3)−1(1 2)(2 3) =
(2 3)(1 2)(2 3) = (1 3) and (1 3) does not belong to the subgroup H.

Proposition 1.13 A subgroup N of a group G is a normal subgroup of G if
and only if xNx−1 = N for all elements x of G.

Proof Suppose that N is a normal subgroup of G. Let x be an element
of G. Then xNx−1 ⊂ N . (This follows directly from the definition of a
normal subgroup.) On replacing x by x−1 we see also that x−1Nx ⊂ N , and
thus N = x(x−1Nx)x−1 ⊂ xNx−1. Thus each of the sets N and xNx−1 is
contained in the other, and therefore xNx−1 = N .

Conversely if N is a subgroup of G with the property that xNx−1 = N
for all x ∈ G, then it follows immediately from the definition of a normal
subgroup that N is a normal subgroup of G.
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Corollary 1.14 A subgroup N of a group G is a normal subgroup of G if
and only if xN = Nx for all elements x of G.

Proof Let N be a subgroup of G, and let x be an element of G. If xNx−1 =
N then xN = (xNx−1)x = Nx. Conversely if xN = Nx then xNx−1 =
Nxx−1 = Ne = N , where e is the identity element of G. Thus xN = Nx if
and only if xNx−1 = N . It follows from Proposition 1.13 that a subgroup N
of G is normal if and only if xN = Nx for all elements x of G, as required.

Let N be a normal subgroup of G. Corollary 1.14 shows that a subset of
G is a left coset of N in G if and only if it is a right coset of N in G. We
may therefore refer to the left and right cosets of a normal subgroup N as
cosets of N in G (since it is not in this case necessary to distinguish between
left and right cosets).

Lemma 1.15 Let N be a normal subgroup of a group G and let x and y be
elements of G. Then (xN)(yN) = (xy)N .

Proof If N is a normal subgroup of G then Ny = yN , and therefore
(xN)(yN) = x(Ny)N = x(yN)N = (xy)(NN). But NN = N , since N
is a subgroup of G. Therefore (xN)(yN) = (xy)N , as required.

Proposition 1.16 Let G be a group, and let N be a normal subgroup of
G. Then the set of all cosets of N in G is a group under the operation of
multiplication. The identity element of this group is N itself, and the inverse
of a coset xN is the coset x−1N for any element x of G.

Proof Let x, y and z be any elements of G. Then the product of the cosets
xN and yN is the coset (xy)N . The subgroup N is itself a coset of N in G,
since N = eN . Moreover

(xN)N = (xN)(eN) = (xe)N = xN,

N(xN) = (eN)(xN) = (ex)N = xN,

(xN)(x−1N) = (xx−1)N = N,

(x−1N)(xN) = (x−1x)N = N.

for all elements x of G. Thus the group axioms are satisfied.

Definition Let N be a normal subgroup of a group G. The quotient group
G/N is defined to be the group of cosets of N in G under the operation of
multiplication.
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Example Consider the dihedral group D8 of order 8, which we represent as
the group of symmetries of a square in the plane with corners at the points
whose Cartesian co-ordinates are (1, 1), (−1, 1), (−1,−1) and (1,−1). Then

D8 = {I,R,R2,R3,T1,T2,T3,T4},

where I denotes the identity transformation, R denotes an anticlockwise
rotation about the origin through a right angle, and T1, T2, T3 and T4 denote
the reflections in the lines y = 0, x = y, x = 0 and x = −y respectively. Let
N = {I,R2}. Then N is a subgroup of D8. The left cosets of N in D8 are
N , A, B and C, where

A = {R,R3}, B = {T1,T3}, C = {T2,T4}.

Moreover N , A, B and C are also the right cosets of N in D8, and thus N is
a normal subgroup of D8. On multiplying the cosets A, B and C with one
another we find that AB = BA = C, AC = CA = B and BC = CB = A.
The quotient group D8/N consists of the set {N,A,B,C}, with the group
operation just described.

1.8 Homomorphisms

Definition A homomorphism θ:G→ K from a group G to a group K is a
function with the property that θ(g1 ∗ g2) = θ(g1) ∗ θ(g2) for all g1, g2 ∈ G,
where ∗ denotes the group operation on G and on K.

Example Let q be an integer. The function from the group Z of integers to
itself that sends each integer n to qn is a homomorphism.

Example Let x be an element of a group G. The function that sends each
integer n to the element xn is a homomorphism from the group Z of integers
to G, since xm+n = xmxn for all integers m and n (Theorem 1.4).

Lemma 1.17 Let θ:G→ K be a homomorphism. Then θ(eG) = eK, where
eG and eK denote the identity elements of the groups G and K. Also θ(x−1) =
θ(x)−1 for all elements x of G.

Proof Let z = θ(eG). Then z2 = θ(eG)θ(eG) = θ(eGeG) = θ(eG) = z. The
result that θ(eG) = eK now follows from the fact that an element z of K
satisfies z2 = z if and only if z is the identity element of K.

Let x be an element of G. The element θ(x−1) satisfies θ(x)θ(x−1) =
θ(xx−1) = θ(eG) = eK , and similarly θ(x−1)θ(x) = eK . The uniqueness of
the inverse of θ(x) now ensures that θ(x−1) = θ(x)−1.
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An isomorphism θ:G → K between groups G and K is a homomor-
phism that is also a bijection mapping G onto K. Two groups G and K are
isomorphic if there exists an isomorphism mapping G onto K.

Example Let D6 be the group of symmetries of an equilateral triangle in
the plane with vertices A, B and C, and let S3 be the group of permutations
of the set {A,B,C}. The function which sends a symmetry of the triangle
to the corresponding permutation of its vertices is an isomorphism between
the dihedral group D6 of order 6 and the symmetric group S3.

Example Let R be the group of real numbers with the operation of addition,
and let R+ be the group of strictly positive real numbers with the operation
of multiplication. The function exp:R→ R

+ that sends each real number x
to the positive real number ex is an isomorphism: it is both a homomorphism
of groups and a bijection. The inverse of this isomorphism is the function
log:R+ → R that sends each strictly positive real number to its natural
logarithm.

Here is some further terminology regarding homomorphisms:

• A monomorphism is an injective homomorphism.

• An epimorphism is a surjective homomorphism.

• An endomorphism is a homomorphism mapping a group into itself.

• An automorphism is an isomorphism mapping a group onto itself.

Definition The kernel ker θ of the homomorphism θ:G → K is the set of
all elements of G that are mapped by θ onto the identity element of K.

Example Let the group operation on the set {+1,−1} be multiplication,
and let θ:Z → {+1,−1} be the homomorphism that sends each integer n
to (−1)n. Then the kernel of the homomorphism θ is the subgroup of Z
consisting of all even numbers.

Lemma 1.18 Let G and K be groups, and let θ:G→ K be a homomorphism
from G to K. Then the kernel ker θ of θ is a normal subgroup of G.

Proof Let x and y be elements of ker θ. Then θ(x) = eK and θ(y) = eK ,
where eK denotes the identity element of K. But then θ(xy) = θ(x)θ(y) =
eKeK = eK , and thus xy belongs to ker θ. Also θ(x−1) = θ(x)−1 = e−1

K = eK ,
and thus x−1 belongs to ker θ. We conclude that ker θ is a subgroup of K.
Moreover ker θ is a normal subgroup of G, for if g ∈ G and x ∈ ker θ then

θ(gxg−1) = θ(g)θ(x)θ(g)−1 = θ(g)θ(g−1) = eK .
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If N is a normal subgroup of some group G then N is the kernel of the
quotient homomorphism θ:G → G/N that sends g ∈ G to the coset gN . It
follows therefore that a subset of a group G is a normal subgroup of G if and
only if it is the kernel of some homomorphism.

Proposition 1.19 Let G and K be groups, let θ:G → K be a homomor-
phism from G to K, and let N be a normal subgroup of G. Suppose that
N ⊂ ker θ. Then the homomorphism θ:G → K induces a homomorphism
θ̂:G/N → K sending gN ∈ G/N to θ(g). Moreover θ̂:G/N → K is injective
if and only if N = ker θ.

Proof Let x and y be elements of G. Now xN = yN if and only if x−1y ∈ N .
Also θ(x) = θ(y) if and only if x−1y ∈ ker θ. Thus if N ⊂ ker θ then θ(x) =
θ(y) whenever xN = yN , and thus θ:G→ K induces a well-defined function
θ̂:G/N → K sending xN ∈ G/N to θ(x). This function is a homomorphism,
since θ̂((xN)(yN)) = θ̂(xyN) = θ(xy) = θ(x)θ(y) = θ̂(xN)θ̂(yN).

Suppose now that N = ker θ. Then θ(x) = θ(y) if and only if xN = yN .
Thus the homomorphism θ̂:G/N → K is injective. Conversely if θ̂:G/N →
K is injective then N must be the kernel of θ, as required.

Corollary 1.20 Let G and K be groups, and let θ:G → K be a homomor-
phism. Then θ(G) ∼= G/ ker θ.

1.9 The Isomorphism Theorems

Lemma 1.21 Let G be a group, let H be a subgroup of G, and let N be a
normal subgroup of G. Then the set HN is a subgroup of G, where HN =
{hn : h ∈ H and n ∈ N}.

Proof The set HN clearly contains the identity element of G. Let x and y
be elements of HN . We must show that xy and x−1 belong to HN . Now
x = hu and y = kv for some elements h and k of H and for some elements u
and v of N . Then xy = (hk)(k−1ukv). But k−1uk ∈ N , since N is normal.
It follows that k−1ukv ∈ N , since N is a subgroup and k−1ukv is the product
of the elements k−1uk and v of N . Also hk ∈ H. It follows that xy ∈ HN .

We must also show that x−1 ∈ HN . Now x−1 = u−1h−1 = h−1(hu−1h−1).
Also h−1 ∈ H, since H is a subgroup of G, and hu−1h−1 ∈ N , since N
is a normal subgroup of G. It follows that x−1 ∈ HN , and thus HN is a
subgroup of G, as required.
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Theorem 1.22 (First Isomorphism Theorem) Let G be a group, let H be a
subgroup of G, and let N be a normal subgroup of G. Then

HN

N
∼=

H

N ∩H
.

Proof Every element of HN/N is a coset of N that is of the form hN for
some h ∈ H. Thus if ϕ(h) = hN for all h ∈ H then ϕ:H → HN/N is
a surjective homomorphism, and kerϕ = N ∩ H. But ϕ(H) ∼= H/ kerϕ
(Corollary 1.20). Therefore HN/N ∼= H/(N ∩H) as required.

Theorem 1.23 (Second Isomorphism Theorem) Let M and N be normal
subgroups of a group G, where M ⊂ N . Then

G

N
∼=
G/M

N/M
.

Proof There is a well-defined homomorphism θ:G/M → G/N that sends
gM to gN for all g ∈ G. Moreover the homomorphism θ is surjective, and
ker θ = N/M . But θ(G/M) ∼= (G/M)/ ker θ. Therefore G/N is isomorphic
to (G/M) / (N/M), as required.

1.10 Group Actions, Orbits and Stabilizers

Definition A left action of a group G on a set X associates to each g ∈ G
and x ∈ X an element g.x of X in such a way that g.(h.x) = (gh).x and
1.x = x for all g, h ∈ G and x ∈ X, where 1 denotes the identity element of
G.

Given a left action of a group G on a set X, the orbit of an element x of
X is the subset {g.x : g ∈ G} of X, and the stabilizer of x is the subgroup
{g ∈ G : g.x = x} of G.

Lemma 1.24 Let G be a finite group which acts on a set X on the left.
Then the orbit of an element x of X contains [G:H] elements, where [G:H]
is the index of the stabilizer H of x in G.

Proof There is a well-defined function θ:G/H → X defined on the set G/H
of left cosets of H in G which sends gH to g.x for all g ∈ G. Moreover this
function is injective, and its image is the orbit of x. The result follows.
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1.11 Conjugacy

Definition Two elements h and k of a group G are said to be conjugate if
k = ghg−1 for some g ∈ G.

One can readily verify that the relation of conjugacy is reflexive, sym-
metric and transitive and is thus an equivalence relation on a group G. The
equivalence classes determined by this relation are referred to as the conju-
gacy classes of G. A group G is the disjoint union of its conjugacy classes.
Moreover the conjugacy class of the identity element of G contains no other
element of G.

A group G is Abelian if and only if all its conjugacy classes contain exactly
one element of the group G.

Definition Let G be a group. The centralizer C(h) of an element h of G is
the subgroup of G defined by C(h) = {g ∈ G : gh = hg}.

Lemma 1.25 Let G be a finite group, and let h ∈ G. Then the number of
elements in the conjugacy class of h is equal to the index [G:C(h)] of the
centralizer C(h) of h in G.

Proof There is a well-defined function f :G/C(h) → G, defined on the set
G/C(h) of left cosets of C(h) in G, which sends the coset gC(h) to ghg−1 for
all g ∈ G. This function is injective, and its image is the conjugacy class of
h. The result follows.

Let H be a subgroup of a group G. One can easily verify that gHg−1 is
also a subgroup of G for all g ∈ G, where gHg−1 = {ghg−1 : h ∈ H}.

Definition Two subgroups H and K of a group G are said to be conjugate
if K = gHg−1 for some g ∈ G.

The relation of conjugacy is an equivalence relation on the collection of
subgroups of a given group G.

1.12 The Class Equation of a Finite Group

Definition The centre Z(G) of a group G is the subgroup of G defined by

Z(G) = {g ∈ G : gh = hg for all h ∈ G}.
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One can verify that the centre of a group G is a normal subgroup of G.
Let G be a finite group, and let Z(G) be the centre of G. Then G \Z(G)

is a disjoint union of conjugacy classes. Let r be the number of conjugacy
classes contained in G\Z(G), and let n1, n2, . . . , nr be the number of elements
in these conjugacy classes. Then ni > 1 for all i, since the centre Z(G) of
G is the subgroup of G consisting of those elements of G whose conjugacy
class contains just one element. Now the group G is the disjoint union of its
conjugacy classes, and therefore

|G| = |Z(G)|+ n1 + n2 + · · ·+ nr.

This equation is referred to as the class equation of the group G.

Definition Let g be an element of a group G. The centralizer C(g) of g is
the subgroup of G defined by C(g) = {h ∈ G : hg = gh}.

Proposition 1.26 Let G be a finite group, and let p be a prime number.
Suppose that pk divides the order of G for some positive integer k. Then
either pk divides the order of some proper subgroup of G, or else p divides
the order of the centre of G.

Proof Choose elements g1, g2, . . . , gr of G\Z(G), where Z(G) is the centre of
G, such that each conjugacy class included in G \Z(G) contains exactly one
of these elements. Let ni be the number of elements in the conjugacy class
of gi and let C(gi) be the centralizer of gi for each i. Then C(gi) is a proper
subgroup of G, and |G| = ni|C(gi)|. Thus if pk divides |G| but does not divide
the order of any proper subgroup of G then p must divide ni for i = 1, 2, . . . , r.
Examination of the class equation |G| = |Z(G)| + n1 + n2 + · · · + nr now
shows that p divides |Z(G)|, as required.

1.13 Cauchy’s Theorem

Theorem 1.27 (Cauchy) Let G be an finite group, and let p be a prime
number that divides the order of G. Then G contains an element of order p.

Proof We prove the result by induction on the order of G. Thus suppose
that every finite group whose order is divisible by p and less than |G| contains
an element of order p. If p divides the order of some proper subgroup of G
then that subgroup contains the required element of order p. If p does not
divide the order of any proper subgroup of G then Proposition 1.26 ensures
that p divides the order of the centre Z(G) of G, and thus Z(G) cannot be
a proper subgroup of G. But then G = Z(G) and the group G is Abelian.
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Thus let G be an Abelian group whose order is divisible by p, and let
H be a proper subgroup of G that is not contained in any larger proper
subgroup. If |H| is divisible by p then the induction hypothesis ensures that
H contains the required element of order p, since |H| < |G|. Suppose then
that |H| is not divisible by p. Choose g ∈ G \ H, and let C be the cyclic
subgroup of G generated by g. Then HC = G, since HC 6= H and HC
is a subgroup of G containing H. It follows from the First Isomorphism
Theorem (Theorem 1.22) that G/H ∼= C/H ∩ C. Now p divides |G/H|,
since |G/H| = |G|/|H| and p divides |G| but not |H|. Therefore p divides
|C|. Thus if m = |C|/p then gm is the required element of order p. This
completes the proof of Cauchy’s Theorem.

1.14 The Structure of p-Groups

Definition Let p be a prime number. A p-group is a finite group whose
order is some power pk of p.

Lemma 1.28 Let p be a prime number, and let G be a p-group. Then there
exists a normal subgroup of G of order p that is contained in the centre of G.

Proof Let |G| = pk. Then pk divides the order of G but does not divide the
order of any proper subgroup of G. It follows from Proposition 1.26 that p
divides the order of the centre of G. It then follows from Cauchy’s Theorem
(Theorem 1.27) that the centre of G contains some element of order p. This
element generates a cyclic subgroup of order p, and this subgroup is normal
since its elements commute with every element of G.

Proposition 1.29 Let G be a p-group, where p is some prime number, and
let H be a proper subgroup of G. Then there exists some subgroup K of G
such that H /K and K/H is a cyclic group of order p.

Proof We prove the result by induction on the order of G. Thus suppose
that the result holds for all p-groups whose order is less than that of G. Let
Z be the centre of G. Then ZH is a well-defined subgroup of G, since Z is
a normal subgroup of G.

Suppose that ZH 6= H. Then H is a normal subgroup of ZH. The
quotient group ZH/H is a p-group, and contains a subgroup K1 of order p
(Lemma 1.28). Let K = {g ∈ ZH : gH ∈ K1}. Then H /K and K/H ∼= K1,
and therefore K is the required subgroup of G.

Finally suppose that ZH = H. Then Z ⊂ H. Let H1 = {hZ : h ∈ H}.
Then H1 is a subgroup of G/Z. But G/Z is a p-group, and |G/Z| < |G|,
since |Z| ≥ p (Lemma 1.28). The induction hypothesis ensures the existence
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of a subgroup K1 of G/Z such that H1 / K1 and K1/H1 is cyclic of order p.
Let K = {g ∈ G : gZ ∈ K1}. Then H / K and K/H ∼= K1/H1. Thus K is
the required subgroup of G.

Repeated applications of Proposition 1.29 yield the following result.

Corollary 1.30 Let G be a finite group whose order is a power of some
prime number p. Then there exist subgroups G0, G1, . . . , Gn of G, where G0

is the trivial subgroup and Gn = G, such that Gi−1 / Gi and Gi/Gi−1 is a
cyclic group of order p for i = 1, 2, . . . , n.

1.15 The Sylow Theorems

Definition Let G be a finite group, and let p be a prime number dividing
the order |G| of G. A p-subgroup of G is a subgroup whose order is some
power of p. A Sylow p-subgroup of G is a subgroup whose order is pk, where
k is the largest natural number for which pk divides |G|.

Theorem 1.31 (First Sylow Theorem) Let G be a finite group, and let p be a
prime number dividing the order of G. Then G contains a Sylow p-subgroup.

Proof We prove the result by induction on the order of G. Thus suppose
that all groups whose order is less than that of G contain the required Sylow
p-subgroups. Let k be the largest positive integer for which pk divides |G|.
If pk divides the order of some proper subgroup H of G then the induction
hypothesis ensures that H contains the required Sylow p-subgroup of order
pk. If pk does not divide the order of any proper subgroup of G then p
divides the order of the centre Z(G) of G (Proposition 1.26). It follows from
Cauchy’s Theorem (Theorem 1.27) that Z(G) contains an element of order
p, and this element generates a normal subgroup N of G of order p. The
induction hypothesis then ensures that G/N has a Sylow p-subgroup L of
order pk−1, since |G/N | = |G|/p. Let K = {g ∈ G : gN ∈ L}. Then
|K| = p|L| = pk, and thus K is the required Sylow p-subgroup of G.

Theorem 1.32 (Second Sylow Theorem) Let G be a finite group, and let
p be a prime number dividing the order of G. Then all Sylow p-subgroups
of G are conjugate, and any p-subgroup of G is contained in some Sylow p-
subgroup of G. Moreover the number of Sylow p-subgroups in G divides the
order of G and is congruent to 1 modulo p.
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Proof Let K be a Sylow p-subgroup of G, and let X be the set of left cosets
of K in G. Let H be a p-subgroup of G. Then H acts on X on the left,
where h(gK) = hgK for all h ∈ H and g ∈ G. Moreover h(gK) = gK if and
only if g−1hg ∈ K. Thus an element gK of X is fixed by H if and only if
g−1Hg ⊂ K.

Let |G| = pkm, where k and m are positive integers and m is coprime to
p. Then |K| = pk. Now the number of left cosets of K in G is |G|/|K|. Thus
the set X has m elements. Now the number of elements in any orbit for the
action of H on X divides the order of H, since it is the index in H of the
stabilizer of some element of that orbit (Lemma 1.24). But then the number
of elements in each orbit must be some power of p, since H is a p-group.
Thus if an element of X is not fixed by H then the number of elements in its
orbit is divisible by p. But X is a disjoint union of orbits under the action
of H on X. Thus if m′ denotes the number of elements of X that are fixed
by H then m−m′ is divisible by p.

Now m is not divisible by p. It follows that m′ 6= 0, and m′ is not divisible
by p. Thus there exists at least one element g ofG such that g−1Hg ⊂ K. But
then H is contained in the Sylow p-subgroup gKg−1. Thus every p-subgroup
is contained in a Sylow p-subgroup of G, and this Sylow p-subgroup is a
conjugate of the given Sylow p-subgroup K. In particular any two Sylow
p-subgroups are conjugate.

It only remains to show that the number of Sylow p-subgroups in G
divides the order of |G| and is congruent to 1 modulo p. On applying the
above results with H = K, we see that g−1Kg = K for some g ∈ G if and
only if gK is a fixed point for the action of K on X. But the number of
elements g of G for which gK is a fixed point is m′|K|, where m′ is the
number of fixed points in X. It follows that the number of elements g of
G for which g−1Kg = K is pkm′. But every Sylow p-subgroup of G is of
the form g−1Kg for some g ∈ G. It follows that the number n of Sylow
p-subgroups in G is given by n = |G|/pkm′ = m/m′. In particular n divides
|G|. Now we have already shown that m − m′ is divisible by p. It follows
that m′ is coprime to p, since m is coprime to p. Also m − m′ is divisible
by m′, since (m − m′)/m′ = n − 1. Putting these results together, we see
that m −m′ is divisible by m′p, and therefore n − 1 is divisible by p. Thus
n divides |G| and is congruent to 1 modulo p, as required.

1.16 Some Applications of the Sylow Theorems

Theorem 1.33 Let p and q be prime numbers, where p < q and q 6≡ 1
(mod p). Then any group of order pq is cyclic.
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Proof Let G be a group of order pq. It follows from the First Sylow Theorem
that G contains Sylow subgroups Np and Nq of orders p and q respectively.
Now the number np of Sylow p-subgroups divides pq and satisfies np ≡ 1
(mod p), by the Second Sylow Theorem. Clearly np cannot be divisible by p,
and therefore either np = 1 or np = q. But q 6≡ 1 (mod p). It follows that
np = 1. Thus the group G has just one subgroup of order p.

Now, given any element g of G, the subgroups Np and gNpg
−1 are of

order p. It follows that gNpg
−1 = Np for all elements g of G. Thus Np is a

normal subgroup of G.
A similar argument shows that Nq is also a normal subgroup of G, since

p < q, and therefore p 6≡ 1 (mod q).
Now Np∩Nq is a subgroup of both Np and Nq. It follows from Lagrange’s

Theorem that the order of Np ∩Nq divides both of the prime numbers p and
q, and therefore |Np ∩ Nq| = 1 and Np ∩ Nq = {e}, where e is the identity
element of G.

Let x ∈ Np and y ∈ Nq. Then yx−1y−1 ∈ Np and xyx−1 ∈ Nq, since
Np and Nq are normal subgroups of G. But then xyx−1y−1 ∈ Np ∩ Nq,
since xyx−1y−1 = x(yx−1y−1) = (xyx−1)y−1, and therefore xyx−1y−1 = e.
Thus xy = yx for all x ∈ Np and y ∈ Nq. It follows easily from this that
the function ϕ:Np × Nq → G which sends (x, y) ∈ Np × Nq to xy is a
homomorphism. This homomorphism is injective, for if xy = e for some
x ∈ Np and y ∈ Nq, then x = y−1, and hence x ∈ Np ∩ Nq, from which it
follows that x = e and y = e. But any injective homomorphism between two
finite groups of the same order is necessarily an isomorphism. Therefore the
function ϕ:Np ×Nq → G is an isomorphism, and thus G ∼= Np ×Nq.

Now any group whose order is prime number must be cyclic. Therefore
the groups Np and Nq are cyclic. Let x be an element of Np that generates
Np, and let y be an element of Nq that generates Nq. Then (x, y)n = (xn, yn)
for all integers n. It follows from this that the order of (x, y) cannot be equal
to 1, p or q, and must therefore be equal to pq. Thus Np × Nq is a cyclic
group generated by (x, y), and therefore G is a cyclic group, generated by
xy, as required.

Example Any finite group whose order is 15, 33, 35, 51, 65, 69, 85, 87, 91
or 95 is cyclic.

Theorem 1.34 Let G be a group of order 2p where p is a prime number
greater than 2. Then either the group G is cyclic, or else the group G is iso-
morphic to the dihedral group D2p of symmetries of a regular p-sided polygon
in the plane.
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Proof It follows from the First Sylow Theorem, or from Cauchy’s Theo-
rem, that the group G contains elements x and y whose orders are 2 and p
respectively. The subgroup N generated by y is then a Sylow p-subgroup
of G. Now it follows from the Second Sylow Theorem that the number of
Sylow p-subgroups of G divides 2p and is congruent to 1 modulo p. There
can therefore be only one such Sylow p-subgroup, since 2, p and 2p are not
congruent to 1 modulo p. Now if g is any element of G then gNg−1 is a
Sylow p-subgroup of G, and therefore gNg−1 = N . We deduce that N is a
normal subgroup of G, of order p.

Now consider the element xyx−1 of G. This must be an element of the
normal subgroup N of G generated by y. Therefore xyx−1 = yk for some
integer k. Moreover k is not divisible by p, since xyx−1 is not the identity
element e of G. Then

yk
2

= (yk)k = (xyx−1)k = xykx−1 = x(xyx−1)x−1 = x2yx−2.

But x2 = x−2 = e, since x is an element of G of order 2. It follows that
yk

2
= y, and thus yk

2−1 = e. But then p divides k2 − 1, since y is an
element of order p. Moreover k2− 1 = (k− 1)(k+ 1). It follows that either p
divides k− 1, in which case xyx−1 = y, or else p divides k+ 1, in which case
xyx−1 = y−1.

In the case when xyx−1 = y we see that xy = yx, and one can then
readily verify that the group G is a cyclic group of order 2p generated by xy.

In the case when xyx−1 = y−1 the group G is isomorphic to the dihedral
group D2p of order 2p. In this case the elements x and y generate G (since
they generate a subgroup of G whose order divides 2p but is greater than p,
and must therefore be equal to 2p). Under the isomorphism with the dihedral
group D2p the element x corresponds to a reflection in one of the axes of
symmetry of the regular p-sided polygon, and the element y corresponds to a
rotation of that polygon about its centre through an angle of 2π/p radians.

Theorem 1.35 Let p and q be prime numbers with p < q, and let d be the
smallest positive integer for which pd ≡ 1 (mod q). If G is a group of order
pkq, where 0 < k < d then G contains a normal subgroup of order q. If G is
a group of order pdq then either G contains a normal subgroup of order q or
else G contains a normal subgroup of order pd.

Proof It follows from the First Sylow Theorem (or directly from Cauchy’s
Theorem) that the group G contains at least one Sylow q-subgroup K, and
this is of order q. If |G| = pkq then the number nq of such Sylow q-subgroups
divides pkq and satisfies nq ≡ 1 (mod q), by the Second Sylow Theorem.
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It follows that nq is coprime to q, and therefore nq = pj for some integer j
satisfying 0 ≤ j ≤ k.

If k < d then none of the integers p, p2, . . . , pk are congruent to 1 modulo
q, and therefore j = 0 and nq = 1. In this case there is just one Sylow
q-subgroup K, and this is a normal subgroup. (Given any element g of G,
the subgroup gKg−1 is a Sylow q-subgroup, and therefore gKg−1 = K.)

If k = d then none of the integers pj with 0 < j < d are congruent to 1
modulo q, and therefore either nq = 1 or nq = pd. If nq = 1 then there is just
one Sylow q-subgroup K, and this is a normal subgroup.

If nq > 1 then nq = pd, and thus there are pd Sylow q-subgroups, and
these are of order q. Now if Ki and Kj are two distinct subgroups of order q
then Ki ∩ Kj is a proper subgroup of both Ki and Kj, and its order is a
proper divisor of the order q of Ki and Kj, by Lagrange’s Theorem. But q
is a prime number. It follows that Ki ∩ Kj = {e}, where e is the identity
element of G. We deduce from this that no element of G of order q can belong
to more than one subgroup of order q. But each subgroup of G of order q
contains q−1 elements of order q (namely all elements of that subgroup with
the exception of the identity element). It follows that the group G contains
pd(q − 1) elements of order q. Now |G| = pdq. It follows that G contains
exactly pd elements that are not of order q. But it follows from the First
Sylow Theorem that G contains at least one Sylow p-subgroup H, and this is
of order pd. This subgroup must therefore contain all the elements of G that
are not of order q. It follows that the group G cannot contain more than
one such Sylow p-subgroup. This Sylow p-subgroup H is therefore a normal
subgroup of G of order pd, as required.

1.17 Simple Groups

Definition A non-trivial group G is said to be simple if the only normal
subgroups of G are the whole of G and the trivial subgroup {e} whose only
element is the identity element e of G.

Lemma 1.36 Any non-trivial Abelian simple group is a cyclic group whose
order is a prime number.

Proof Let G be a non-trivial Abelian simple group, and let x be an element
of G that is not equal to the identity element e of G. All subgroups of an
Abelian group are normal subgroups. Therefore the subgroup of G generated
by x is a normal subgroup of G, and must therefore be the whole of G.
Therefore G is a cyclic group, generated by the element x. Moreover all
elements of G other than the identity element are generators of G, and are

21



therefore of order p, where p = |G|. Let d be a divisor of p. Then xd is an
element of order p/d, since p/d is the smallest positive integer k for which
xdk = e. It follows that either d = 1 or d = p (since the group G contains no
element whose order is greater than 1 but less than p). It follows that the
order p of G is a prime number, as required.

Using the Sylow Theorems and related results, we can prove that any
finite simple group whose order is less than 60 is a cyclic group of prime
order.

Now the prime numbers less than 60 are the following: 2, 3, 5, 7, 11, 13,
17, 19, 23, 29, 31, 37, 41, 43, 47, 53 and 59. All groups of these orders are
simple groups, and are cyclic groups.

If p is a prime number greater than 2 then any group of order 2p is either
a cyclic group or else is isomorphic to the dihedral group D2p of order 2p
(Theorem 1.34). In either case such a group contains a normal subgroup of
order p, and therefore not a simple group. In particular, there are no simple
groups of orders 6, 10, 14, 22, 26, 34, 38, 46 or 58.

If G is a group of order pk for some prime number p and for some integer k
satisfying k ≥ 2, then G contains a normal subgroup of order p (Lemma 1.28).
It follows that such a group is not simple. In particular, there are no simple
groups of orders 4, 8, 16, 32, 9, 27, 25 and 49.

Let G be a group of order pq, where p and q are prime numbers and
p < q. Any Sylow q-subgroup of G is of order q, and the number of such
Sylow q-subgroups must divide pq and be congruent to 1 modulo q. Now
p cannot be congruent to 1 modulo q, since 1 < p < q. Therefore G has
just one Sylow q-subgroup, and this is a normal subgroup of G of order q.
It follows that such a group is not a simple group. In particular there are
no simple groups of orders 15, 21, 33, 35, 39, 51, 55 or 57. (In particular it
follows from Theorem 1.33 that any group whose order is 15, 33, 35, or 51 is
a cyclic group.)

It only remains to verify that there are no simple groups of orders 12, 18,
20, 24, 28, 30, 36, 40, 42, 44, 45, 48, 50, 52, 54 or 56.

We can deal with many of these on applying Theorem 1.35. On applying
this theorem with p = 2, q = 3 and d = 2, we see that there are no simple
groups of orders 6 or 12. On applying the theorem with p = 2, q = 5 and
d = 4, we see that there are no simple groups of orders 10, 20, 40 or 80.
On applying the theorem with p = 2, q = 7 and d = 3, we see that there
are no simple groups of orders 14, 28 or 56. On applying the theorem with
p = 2, q = 11 we see that there are no simple groups of orders 22, 44 etc.,
on applying the theorem with p = 2, q = 13 we see that there are no simple
groups of orders 26, 52 etc., and on applying the theorem with p = 3 and
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q = 5, we see that there are no simple groups of orders 15, 45 etc.
It now remains to verify that there are no simple groups of orders 18, 24,

30, 36, 42, 48, 50 or 54.
Using the Second Sylow Theorem, we see that any group of order 18 has

just one Sylow 3-subgroup. This Sylow 3-subgroup is then a normal group
of order 9, and therefore no group of order 18 is simple. Similarly a group of
order 50 has just one Sylow 5-subgroup, which is then a normal subgroup of
order 25, and therefore no group of order 50 is simple. Also a group of order
54 has just one Sylow 3-subgroup, which is then a normal subgroup of order
27, and therefore no group of order 54 is simple.

On applying the Second Sylow Theorem, we see the number of Sylow
7-subgroups of any group of order 42 must divide 42 and be congruent to 1
modulo 7. This number must then be coprime to 7 and therefore divide 6,
since 42 = 7× 6. But no divisor of 6 greater than 1 is coprime to 1 modulo
7. It follows that any group of order 42 has just one Sylow 7-subgroup, and
this subgroup is therefore a normal subgroup of order 7. Thus no group of
order 42 is simple.

On applying the Second Sylow Theorem, we see that if a group of order 30
has more than one subgroup of order 3 then it must have 10 such subgroups,
and must therefore have 20 elements of order 3 (since each subgroup of or-
der 3 contains two elements of order 3, and the intersection of two distinct
subgroups of order 3 must be the trivial subgroup). Similarly if a group of
order 30 has more than one subgroup of order 5 then it must have 6 such
subgroups, and must therefore have 24 elements of order 5. Obviously such
a group cannot have both 20 elements of order 3 and 24 elements of order 5.
Therefore it either has a single subgroup of order 3 or a single subgroup of
order 5. This subgroup is normal. Therefore no group of order 30 is simple.

In order to show that there are no simple groups of order less than 60,
apart from the cyclic groups whose order is prime, it only remains to verify
that there are no simple groups of orders 24, 36 and 48. In order to deal with
these remaining cases, we need to make use of the following result.

Lemma 1.37 Let H and K be subgroups of a finite group G. Then

|H ∩K| ≥ |H| |K|
|G|

.

Proof Let ϕ:H × K → G be the function with ϕ(h, k) = hk for all h ∈
H and k ∈ K. (This function is not in general a homomorphism.) Let
(h1, k1) and (h2, k2) be elements of H × K. Then h1k1 = h2k2 if and only
if h−1

2 h1 = k2k
−1
1 , in which case h−1

2 h1 ∈ H ∩K. But then h2 = h1x
−1 and

k2 = xk1 for some element x of H ∩ K. Thus ϕ(h1, k1) = ϕ(h2, k2) if and
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only if (h2, k2) = (h1x
−1, xk1) for some element x of H ∩K. It follows that

each element of the range ϕ(H×K) of the function ϕ is the image of exactly

|H ∩K| elements of H×K. It follows from this that ϕ(H×K) has
|H| |K|
|H ∩K|

elements. But ϕ(H ×K) is a subset of G. Therefore

|H| |K|
|H ∩K|

≤ |G|.

The required inequality now follows directly.

Let G be a finite group, and let H be a subgroup of index 2 in G (i.e., a
subgroup with half as many elements as G). Then H is a normal subgroup
of G. Indeed the subsets H and G \H of G are the left cosets and are also
the right cosets of H in G, and therefore the left cosets of H in G coincide
with the right cosets.

Example We now show that there are no simple groups of order 24. Let G
be a group of order 24. Then G contains a Sylow 2-subgroup H of order 8. If
this is the only Sylow 2-subgroup, then it is a normal subgroup, and therefore
the group G is not simple. Otherwise the group G contains at least two
distinct subgroups H and K of order 8. It then follows from Lemma 1.37
that |H ∩ K| ≥ 8

3
. But |H ∩ K| divides 8, by Lagrange’s Theorem, since

H ∩ K is a subgroup of H and of K. Therefore |H ∩ K| = 4. It follows
that H ∩K is a subgroup of index 2 in H and K, and is therefore a normal
subgroup of both H and K. Let

J = {g ∈ G : g(H ∩K)g−1 = H ∩K}.

Then J is a subgroup of G, and H ∩K is a normal subgroup of J . Moreover
H and K are subgroups of J , and therefore |J | is divisible by 8, by Lagrange’s
Theorem. But J is a subgroup of G, and hence |J | divides 24. Also |J | > 8,
since H (and K) are proper subgroups of J . It follows that |J | = 24, and
therefore J = G. But then H ∩K is a normal subgroup of G of order 4, and
therefore G is not simple.

An analogous argument shows that there are no simple groups of order 48:
a group G of order 48 contains either a single Sylow 2-subgroup of order 16,
which is then a normal subgroup of G, or else it contains a normal subgroup
of order 8 which is the intersection of two distinct Sylow 2-subgroups of G.

The following result will be needed in order to show that there are no
simple groups of order 36. (It may be obtained as an immediate corollary of
Proposition 1.29.)
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Lemma 1.38 Let G be a group of order p2 where p is a prime number, and
let H be a subgroup of G of order p. Then H is a normal subgroup of G.

Proof Let J = {g ∈ G : gHg−1 = H}. Then J is a subgroup of G and H is
a normal subgroup of J . We shall show that J = G.

Now the centre Z(G) of G is contained in J . Moreover it follows from
Lemma 1.28 that |Z(G)| is divisible by p. Were it the case that |J | = p then
J = H = Z(G). But then J would consist of all elements of G for which
gZ(G)g−1 = Z(G), and thus would be the whole of G, which is impossible.
It follows that |J | = p2 (since |J | > p and |J | divides p2). But then J = G,
and hence H is a normal subgroup of G, as required.

Example We now show that there are no simple groups of order 36. Let G
be a group of order 36. Then G contains a Sylow 3-subgroup H of order 9. If
this is the only Sylow 3-subgroup, then it is a normal subgroup, and therefore
the group G is not simple. Otherwise the group G contains at least two
distinct subgroups H and K of order 9. It then follows from Lemma 1.37
that |H ∩ K| ≥ 9

4
. But |H ∩ K| divides 9, by Lagrange’s Theorem, since

H ∩K is a subgroup of H and of K. Therefore |H ∩K| = 3. On applying
Lemma 1.38 we see that H ∩K is a normal subgroup of H and of K.

Let
J = {g ∈ G : g(H ∩K)g−1 = H ∩K}.

Then J is a subgroup of G, and H ∩K is a normal subgroup of J . Moreover
H and K are subgroups of J , and therefore |J | is divisible by 9, by Lagrange’s
Theorem. But J is a subgroup of G, and hence |J | divides 36. Also |J | > 9,
since H (and K) are proper groups of J . It follows that either |J | = 18 or
36. If |J | = 36 then J = G and H ∩K is a normal subgroup of G of order 3.
If |J | = 18 then J is a subgroup of G of index 2, and is therefore a normal
subgroup of order 18. We conclude that any group of order 36 contains at
least one non-trivial normal subgroup. Therefore there are no simple groups
of order 36.

We have now shown that there are indeed no simple groups of order less
than 60, other than the cyclic groups of prime order.

There is a simple group of order 60 which is simple but is not cyclic. This
group is the alternating group A5, consisting of all even permutations of a
set with five elements.

Lemma 1.39 The alternating group A5 is simple.
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Proof We regard A5 as the group even permutations of the set {1, 2, 3, 4, 5}.
There are 60 such permutations: the identity permutation, twenty 3-cycles,
twenty-four 5-cycles, and fifteen permutations that are products of two dis-
joint transpositions. (Such a product of disjoint transpositions is a permu-
tation (a1 a2)(a3 a4) that interchanges a1 with a2 and a3 with a4 for some
distinct elements a1, a2, a3 and a4 of the set {1, 2, 3, 4, 5}.)

Now each 3-cycle in A5 generates a Sylow 3-subgroup of order 3, and these
subgroups are all conjugate to one another by the Second Sylow Theorem.
It follows that any normal subgroup of A5 that contains at least one 3-cycle
must contain all twenty 3-cycles, and thus its order must therefore be at
least 21 (since it must also contain the identity element). Similarly each
5-cycle in A5 generates a Sylow 5-subgroup of order 5, and these subgroups
are all conjugate to one another. Therefore any normal subgroup of A5 that
contains at least one 5-cycle must contain all twenty four 5-cycles, and thus
its order must be at least 25.

Now if A5 were to contain a subgroup of order 30, this subgroup would be
the kernel of a non-constant homomorphism ϕ:A5 → {1,−1} from A5 to the
multiplicative group consisting of the numbers 1 and −1. But any 3-cycle
or 5-cycle would have to belong to the kernel of this homomorphism, and
therefore this kernel would contain at least 45 elements, which is impossible.
We conclude that A5 cannot contain any subgroup of order 30. It follows
from Lagrange’s Theorem that any normal subgroup of A5 that contains at
least one 3-cycle or 5-cycle must be the whole of A5.

The group A5 contains 5 Sylow 2-subgroups, which are of order 4. One
of these consists of the identity permutation, together with the three permu-
tations (1 2)(3 4), (1 3)(2 4) and (1 4)(2 3). (Each of these permutations fixes
the element 5.) There are four other such Sylow 2-subgroups, and all of the
Sylow 2-subgroups are conjugate to one another. It follows that A5 does not
contain any normal subgroup of order 4. Moreover A5 cannot contain any
normal subgroup of order 2, since any element of order 2 belongs to one of
the five Sylow 2-subgroups of order 4, and is therefore conjugate to elements
of order 2 in the other Sylow 2-subgroups.

Now any subgroup of A5 whose order is divisible by 3 must contain a
3-cycle by Cauchy’s Theorem. (Theorem 1.27.) Similarly any subgroup of
A5 whose order is divisible by 5 must contain a 5-cycle. It follows that the
order of any proper normal subgroup of A5 cannot be divisible by 3 or 5.
But this order must divide 60. Therefore the order of any proper normal
subgroup of A5 must be at most 4. But we have seen that A5 cannot contain
any normal subgroup of order 4 or 2. Therefore any proper normal subgroup
of A5 is trivial, and therefore A5 is simple.
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1.18 Solvable Groups

The concept of a solvable group was introduced into mathematics by Evariste
Galois, in order to state and prove his fundamental general theorems con-
cerning the solvability of polynomial equations. We now investigate the basic
properties of such solvable groups.

Definition A group G is said to be solvable (or soluble) if there exists a finite
sequence G0, G1, . . . , Gn of subgroups of G, where G0 = {1} and Gn = G,
such that Gi−1 is normal in Gi and Gi/Gi−1 is Abelian for i = 1, 2, . . . , n.

Example The symmetric group Σ4 is solvable. Indeed let V4 be the Klein-
sche Viergruppe consisting of the identity permutation ι and the permuta-
tions (12)(34), (13)(24) and (14)(23), and let A4 be the alternating group
consisting of all even permutations of {1, 2, 3, 4}. Then {ι} / V4 / A4 /Σ4, V4

is Abelian, A4/V4 is cyclic of order 3, and Σ4/A4 is cyclic of order 2.

In order to prove certain basic results concerning solvable groups, we
need to make use of the Isomorphism Theorems for groups, which may be
described as follows.

Lemma 1.40 Let G be a group, let H1 and H2 be subgroups of G, where
H1 / H2, and let J1 = H1 ∩ N , J2 = H2 ∩ N , K1 = H1N/N and K2 =
H2N/N , where N is some normal subgroup of G. Then J1 / J2 and K1 /K2.
Moreover there exists a normal subgroup of H2/H1 isomorphic to J2/J1, and
the quotient of H2/H1 by this normal subgroup is isomorphic to K2/K1.

Proof It is a straightforward exercise to verify that J1 /J2 and K1 /K2. Let
θ:H2 → K2 be the surjective homomorphism sending h ∈ H2 to the coset hN .
Now θ induces a well-defined surjective homomorphism ψ:H2/H1 → K2/K1,
since θ(H1) ⊂ K1. Also θ−1(K1) = H2∩ (H1N). But H2∩ (H1N) = H1(H2∩
N), for if a ∈ H1, b ∈ N and ab ∈ H2 then b ∈ H2 ∩N . Therefore

kerψ = θ−1(K1)/H1 = H1(H2 ∩N)/H1
∼= H2 ∩N/H1 ∩N = J2/J1

by the First Isomorphism Theorem (Theorem 1.22). Moreover the quotient
of H2/H1 by the normal subgroup kerψ is isomorphic to the image K2/K1

of ψ. Thus kerψ is the required normal subgroup of H2/H1.

Proposition 1.41 Let G be a group, and let H be a subgroup of G. Then

(i) if G is solvable then any subgroup H of G is solvable;

(ii) if G is solvable then G/N is solvable for any normal subgroup N of G;
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(iii) if N is a normal subgroup of G and if both N and G/N are solvable
then G is solvable.

Proof Suppose that G is solvable. Let G0, G1, . . . , Gm be a finite sequence
of subgroups of G, where G0 = {1}, Gn = G, and Gi−1 / Gi and Gi/Gi−1 is
Abelian for i = 1, 2, . . . ,m.

We first show that the subgroup H is solvable. Let Hi = H ∩ Gi for
i = 0, 1, . . . ,m. Then H0 = {1} and Hm = H. If u ∈ Hi and v ∈ Hi−1 then
uvu−1 ∈ H, since H is a subgroup of G. Also uvu−1 ∈ Gi−1, since u ∈ Gi−1,
v ∈ Gi and Gi−1 is normal in Gi. Therefore uvu−1 ∈ Hi−1. Thus Hi−1 is a
normal subgroup of Hi for i = 1, 2, . . . ,m. Moreover

Hi

Hi−1

=
Gi ∩H

Gi−1 ∩ (Gi ∩H)
∼=
Gi−1(Gi ∩H)

Gi−1

by the First Isomorphism Theorem (Theorem 1.22), and thus Hi/Hi−1 is
isomorphic to a subgroup of the Abelian group Gi/Gi−1. It follows that
Hi/Hi−1 must itself be an Abelian group. We conclude therefore that the
subgroup H of G is solvable.

Now let N be a normal subgroup of G, and let Ki = GiN/N for all i.
Then K0 is the trivial subgroup of G/N and Km = G/N . It follows from
Lemma 1.40 that Ki−1 / Ki and Ki/Ki−1 is isomorphic to the quotient of
Gi/Gi−1 by some normal subgroup. But a quotient of any Abelian group
must itself be Abelian. Thus each quotient group Ki/Ki−1 is Abelian, and
thus G/N is solvable.

Finally suppose that G is a group, N is a normal subgroup of G and
both N and G/N are solvable. We must prove that G is solvable. Now the
solvability of N ensures the existence of a finite sequence G0, G1, . . . , Gm of
subgroups of N , where G0 = {1}, Gm = N , and Gi−1 / Gi and Gi/Gi−1 is
Abelian for i = 1, 2, . . . ,m. Also the solvability of G/N ensures the existence
of a finite sequence K0, K1, . . . , Kn of subgroups of G/N , where K0 = N/N ,
Kn = G/N , and Ki−1 / Ki and Ki/Ki−1 is Abelian for i = 1, 2, . . . , n.
Let Gm+i be the preimage of Ki under the the quotient homomorphism
ν:G → G/N , for i = 1, 2, . . . , n. The Second Isomorphism Theorem (The-
orem 1.23) ensures that Gm+i/Gm+i−1

∼= Ki/Ki−1 for all i > 0. Therefore
G0, G1, . . . , Gm+n is a finite sequence of subgroups of G, where G0 = {1},
Gn = G, and Gi−1 / Gi and Gi/Gi−1 is Abelian for i = 1, 2, . . . ,m+ n. Thus
the group G is solvable, as required.

Example The alternating group A5 is simple. It follows that A5 is not
solvable, since the definition of solvable groups ensures that that any simple
solvable group is cyclic, and A5 is not cyclic. Now if n ≥ 5 the symmetric
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group Σn of all permutations of a set of n elements contains a subgroup
isomorphic to A5. (Take as this subgroup the set of all even permutations of
five of the elements permuted by the elements of Σn.) Moreover any subgroup
of a solvable group is solvable (Proposition 1.41.) It follows therefore that
the symmetric group Σn is not solvable when n ≥ 5.
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