Course 311: Hilary Term 2006 Part V: Hilbert's Nullstellensatz

D. R. Wilkins

Contents

5 Hilbert's Nullstellensatz 2
5.1 Commutative Algebras of Finite Type 2
5.2 Zariski's Theorem 3
5.3 Hilbert's Nullstellensatz 5

5 Hilbert's Nullstellensatz

5.1 Commutative Algebras of Finite Type

Definition Let K be a field. A unital ring R is said to be a K-algebra if $K \subset R$, the multiplicative identity elements of K and R coincide, and $a b=b a$ for all $a \in K$ and $b \in R$.

It follows from this definition that a unital commutative ring R is a K algebra if $K \subset R$ and K and R have the same multiplicative identity element. Note that if $L: K$ is a field extension, then the field L is a unital K-algebra.

Definition Let K be a field, and let R_{1} and R_{2} be K-algebras. A ring homomorphism $\varphi: R_{1} \rightarrow R_{2}$ is said to be a K-homomorphism if $\varphi(k)=k$ for all $k \in K$.

Given any subset A of a unital commutative K-algebra R, we denote by $K[A]$ the subring of R generated by $K \cup A$ (i.e., the smallest subring of R containing $K \cup A$). In particular, if $a_{1}, a_{2}, \ldots, a_{k}$ are elements of R then we denote by $K\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ the subring of R generated by $K \cup\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. If $R=K[A]$ then we say that the set A generates the K-algebra R.

Note that any element of $K\left[a_{1}, a_{2}, \ldots, a_{k}\right]$ is of the form $f\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ for some polynomial f in k independent indeterminates with coefficients in K. Indeed the set of elements of R that are of this form is a subring of R, and is clearly the smallest subring of R containing $K \cup\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$.

Definition Let K be a field. A unital commutative ring R is said to be a $K-$ algebra of finite type if $K \subset R$, the identity elements of K and R coincide, and there exists a finite subset $a_{1}, a_{2}, \ldots, a_{k}$ of R such that $R=K\left[a_{1}, a_{2}, \ldots, a_{k}\right]$.

Lemma 5.1 Let K be a field. Then every K-algebra of finite type is a Noetherian ring.

Proof Let R be a K-algebra of finite type. Then there exist $a_{1}, a_{2}, \ldots, a_{k} \in$ R such that $R=K\left[a_{1}, a_{2}, \ldots, a_{k}\right]$. Now it follows from the Hilbert Basis Theorem that the ring $K\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ of polynomials in the independent indeterminates $x_{1}, x_{2}, \ldots, x_{k}$ with coefficients in K is a Noetherian ring (see Corollary 3.25). Moreover $R \cong K\left[x_{1}, x_{2}, \ldots, x_{k}\right] / \mathfrak{a}$, where \mathfrak{a} is the kernel of the homomorphism

$$
\varepsilon: K\left[x_{1}, x_{2}, \ldots, x_{k}\right] \rightarrow R
$$

that sends $f \in K\left[x_{1}, x_{2}, \ldots, x_{k}\right]$ to $f\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. (Note that the homomorphism ε is surjective; indeed the image of this homomorphism is a subring
of R containing K and a_{i} for $i=1,2, \ldots, k$, and is therefore the whole of R.) Thus R is isomorphic to the quotient of a Noetherian ring, and is therefore itself Noetherian (see Lemma 3.22).

If $K(\alpha): K$ is a simple algebraic extension then $K(\alpha)$ is a K-algebra of finite type. Indeed $K(\alpha)$ is a finite-dimensional vector space over K (see Theorem 4.13). If $a_{1}, a_{2}, \ldots, a_{k}$ span $K(\alpha)$ as a vector space over K then clearly $K(\alpha)=K\left[a_{1}, a_{2}, \ldots, a_{k}\right]$.

5.2 Zariski's Theorem

Proposition 5.2 Let K and L be fields, with $K \subset L$. Suppose that $L: K$ is a simple field extension and that L is a K-algebra of finite type. Then the extension L : K is finite.

Proof The field L is a K-algebra of finite type, and therefore there exist elements $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ of L such that $L=K\left[\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right]$. Also the field extension $L: K$ is simple, and therefore $L=K(\alpha)$ for some element α of K. Now, given any element β of L there exist polynomials f and g in $K(x)$ such that $g(\alpha) \neq 0$ and $\beta=f(\alpha) g(\alpha)^{-1}$. Indeed one may readily verify that the set of elements of L that may be expressed in the form $f(\alpha) g(\alpha)^{-1}$ for some polynomials $f, g \in K[x]$ with $g(\alpha) \neq 0$ is a subfield of L which contains $K \cup\{\alpha\}$. It is therefore the whole of L, since $L=K(\alpha)$. It follows that there exist polynomials f_{i} and g_{i} in $K[x]$ such that $g_{i}(\alpha) \neq 0$ and $\beta_{i}=f_{i}(\alpha) g_{i}(\alpha)^{-1}$ for $i=1,2, \ldots, m$. Let $e(x)=g_{1}(x) g_{2}(x) \ldots, g_{m}(x)$. We shall show that if the element α of L were not algebraic over K then every irreducible polynomial with coefficients in K would divide $e(x)$,

Let $p \in K[x]$ be an irreducible polynomial with coefficients in K, where $p(\alpha) \neq 0$. Now $L=K\left[\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right]$, and therefore every element of L is expressible as a polynomial in $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ with coefficients in K. Thus there exists some polynomial H_{p} in m indeterminates, with coefficents in K, such that

$$
p(\alpha)^{-1}=H_{p}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right) .
$$

Let d be the total degree of H. One can readily verify that

$$
e(\alpha)^{d} H_{p}\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)=q(\alpha),
$$

for some polynomial $q(x)$ with coefficients in K. But then $p(\alpha) q(\alpha)=e(\alpha)^{d}$, and therefore α is a zero of the polynomial $p q-e^{d}$. If it were the case that α were not algebraic over K then this polynomial $p q-e^{d}$ would be the zero polynomial, and thus $p(x) q(x)=e(x)^{d}$. But it follows from Proposition 4.5
that an irreducible polynomial divides a product of polynomials if and only if it divides at least one of the factors. Therefore the irreducible polynomial p would be an irreducible factor of the polynomial e, and so would be an irreducible factor of one of the polynomials $g_{1}, g_{2}, \ldots, g_{m}$. We see therefore that if α were not algebraic over K then the polynomial e would be divisible by every irreducible polynomial in $K[x]$. But this is impossible, because a given polynomial in $K[x]$ can have only finitely many irreducible factors, whereas $K[x]$ contains infinitely many irreducible polynomials (Lemma 4.4). We conclude therefore that α must be algebraic over K. But any simple algebraic field extension is finite (Theorem 4.13). Therefore $L: K$ is finite, as required.

Lemma 5.3 Suppose that $K \subset A \subset B$, where A and B are unital commutative rings, and B is both a K-algebra of finite type and a finitely generated A-module. Then A is also a K-algebra of finite type.

Proof There exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in B$ such that $B=K\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right]$, since B is a K-algebra of finite type. Also there exist $\beta_{1}, \beta_{2}, \ldots, \beta_{n} \in B$ such that

$$
B=A \beta_{1}+A \beta_{2}+\cdots+A \beta_{n},
$$

since B is a finitely generated A-module. Moreover we can choose $\beta_{1}=1$. But then there exist elements $\lambda_{q i}$ of A such that $\alpha_{q}=\sum_{i=1}^{n} \lambda_{q i} \beta_{i}$ for $q=$ $1,2, \ldots, n$. Also there exist elements $\mu_{i j k}$ of A such that $\beta_{i} \beta_{j}=\sum_{k=1}^{n} \mu_{i j k} \beta_{k}$ for $i, j=1,2 \ldots, n$. Let

$$
S=\left\{\lambda_{q i}: 1 \leq q \leq m, \quad 1 \leq i \leq n\right\} \cup\left\{\mu_{i j k}: 1 \leq i, j, k \leq n\right\},
$$

let $A_{0}=K[S]$, and let

$$
B_{0}=A_{0} \beta_{1}+A_{0} \beta_{2}+\cdots+A_{0} \beta_{n} .
$$

Now each product $\beta_{i} \beta_{j}$ is a linear combination of $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ with coefficients $\mu_{i j k}$ in A_{0}, and therefore $\beta_{i} \beta_{j} \in B_{0}$ for all i and j. It follows from this that the product of any two elements of B_{0} must itself belong to B_{0}. Therefore B_{0} is a subring of B. Now $K \subset B_{0}$, since $K \subset A_{0}$ and $\beta_{1}=1$. Also $\alpha_{q} \in B_{0}$ for $q=1,2, \ldots, m$. But $B=K\left(\alpha_{1}, \alpha_{2}, \cdots \alpha_{m}\right)$. It follows that $B_{0}=B$, and therefore B is a finitely-generated A_{0}-module.

Now any K-algebra of finite type is a Noetherian ring (Lemma 5.1). It follows that A_{0} is a Noetherian ring, and therefore any finitely-generated module over A_{0} is Noetherian (see Corollary 3.21). In particular B is a Noetherian A_{0}-module, and therefore every submodule of B is a finitelygenerated A_{0}-module. In particular, A is a finitely-generated A_{0}-module.

Let $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{p}$ be a finite collection of elements of A that generate A as an A_{0}-module. Then any element a of A can be written in the form

$$
a=a_{1} \gamma_{1}+a_{2} \gamma_{2}+\cdots+a_{p} \gamma_{p},
$$

where $a_{l} \in A_{0}$ for $l=1,2, \ldots, p$. But each element of A_{0} can be expressed as a polynomial in the elements $\lambda_{q i}$ and $\mu_{i j k}$ with coefficients in K. It follows that each element of A can be expressed as a polynomial in the elements $\lambda_{q i}$, $\mu_{i j k}$ and γ_{l} (with coefficients in K), and thus $A=K[T]$, where

$$
T=S \cup\left\{\gamma_{l}: 1 \leq l \leq p\right\} .
$$

Thus A is a K-algebra of finite type, as required.
Theorem 5.4 (Zariski) Let $L: K$ be a field extension. Suppose that the field L is a K-algebra of finite type. Then $L: K$ is a finite extension of K.

Proof We prove the result by induction on the number of elements required to generate L as a K-algebra. Thus suppose that $L=K\left[\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right]$, and that the result is true for all field extensions $L_{1}: K_{1}$ with the property that L_{1} is generated as a K_{1}-algebra by fewer than n elements (i.e., there exist elements $\beta_{1}, \beta_{2}, \ldots, \beta_{m}$ of L_{1}, where $m<n$, such that $L_{1}=K_{1}\left[\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right]$). Let $K_{1}=K\left(\alpha_{1}\right)$. Then $L=K_{1}\left[\alpha_{2}, \alpha_{3}, \cdots, \alpha_{n}\right]$. It follows from the induction hypothesis that $L: K_{1}$ is a finite field extension (and thus L is a finitely-generated K_{1}-module). It then follows from Lemma 5.3 that K_{1} is a K-algebra of finite type.

But the extension $K_{1}: K$ is a simple extension. It therefore follows from Proposition 5.2 that the extension $K_{1}: K$ is finite. Thus both $L: K_{1}$ and $K_{1}: K$ are finite extensions. It follows from the Tower Law (Proposition 4.10) that $L: K$ is a finite extension, as required.

5.3 Hilbert's Nullstellensatz

Proposition 5.5 Let K be an algebraically closed field, let R be a commutative K-algebra of finite type, and let \mathfrak{m} be a maximal ideal of R. Then there exists a surjective K-homomorphism $\xi: R \rightarrow K$ from R to K such that $\mathfrak{m}=\operatorname{ker} \xi$.

Proof Let $L=R / \mathfrak{m}$, and let $\varphi: R \rightarrow L$ denote the quotient homomorphism. Then L is a field (Lemma 3.30). Now $\mathfrak{m}=\operatorname{ker} \varphi$ and $1 \notin \mathfrak{m}$, and therefore $\varphi \mid K \neq 0$. It follows that $\mathfrak{m} \cap K$ is a proper ideal of the field K. But the only proper ideal of a field is the zero ideal (Lemma 3.4). Therefore
$\mathfrak{m} \cap K=\{0\}$. It follows that the restriction of φ to K is injective and maps K isomorphically onto a subfield of L. Let $K_{1}=\varphi(K)$, and let $\iota: K \rightarrow K_{1}$ be the isomorphism obtained on restricting $\varphi: R \rightarrow L$ to K. Then $L: K_{1}$ is a field extension, and L is a K_{1}-algebra of finite type. It follows from Zariski's Theorem (Theorem 5.4) that $L: K_{1}$ is a finite field extension. But then $L=K_{1}$, since the field K_{1} is algebraically closed (Lemma 4.16). Let $\xi=\iota^{-1} \circ \varphi$. Then $\xi: R \rightarrow K$ is the required K-homomorphism from R to K.

Theorem 5.6 Let K be an algebraically closed field, and let R be a commutative K-algebra of finite type. Let \mathfrak{a} be a proper ideal of R. Then there exists a K-homomorphism $\xi: R \rightarrow K$ from R to K such that $\mathfrak{a} \subset \operatorname{ker} \xi$.

Proof Every proper ideal of R is contained in some maximal ideal (Theorem 3.31). Let \mathfrak{m} be a maximal ideal of R with $\mathfrak{a} \subset \mathfrak{m}$. It follows from Proposition 5.5 that $\mathfrak{m}=\operatorname{ker} \xi$ for some K-homomorphism $\xi: R \rightarrow K$. Then $\mathfrak{a} \subset \operatorname{ker} \xi$, as required.

Theorem 5.7 (Weak Nullstellensatz) Let K be an algebraically closed field, and let \mathfrak{a} be a proper ideal of the polynomial ring $K\left[X_{1}, X_{2}, \ldots, X_{n}\right]$, where $X_{1}, X_{2}, \ldots, X_{n}$ are independent indeterminates. Then there exists some point $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ of $\mathbb{A}^{n}(K)$ such that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for all $f \in \mathfrak{a}$.

Proof Let $R=K\left[X_{1}, X_{2}, \ldots, X_{n}\right]$. Then R is a K-algebra of finite type. It follows from Theorem 5.6 that there exists a K-homomorphism $\xi: R \rightarrow K$ such that $\mathfrak{a} \subset \operatorname{ker} \xi$. Let $a_{i}=\xi\left(X_{i}\right)$ for $i=1,2, \ldots, n$. Then $\xi(f)=$ $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for all $f \in R$. It follows that $f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=0$ for all $f \in \mathfrak{a}$, as required.

Theorem 5.8 (Strong Nullstellensatz) Let K be an algebraically closed field, let \mathfrak{a} be an ideal of the polynomial ring $K\left[X_{1}, X_{2}, \ldots, X_{n}\right]$, and let $f \in$ $K\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ be a polynomial with the property that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ 0 for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in V(\mathfrak{a})$, where

$$
V(\mathfrak{a})=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{A}^{n}(K): g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0 \text { for all } g \in \mathfrak{a}\right\} .
$$

Then $f^{r} \in \mathfrak{a}$ for some natural number r.
Proof Let $R=K\left[X_{1}, X_{2}, \ldots, X_{n}\right]$, and let S denote the ring $R[Y]$ of polynomials in a single indeterminate Y with coefficients in the ring R. Then S can be viewed as the ring $K\left[X_{1}, X_{2}, \ldots, X_{n}, Y\right]$ of polynomials in the $n+1$ indeterminate indeterminates $X_{1}, X_{2}, \ldots, X_{n}, Y$ with coefficients in the field K.

The ideal \mathfrak{a} of R determines a corresponding ideal \mathfrak{b} of S consisting of those elements of S that are of the form

$$
g_{0}+g_{1} Y+g_{2} Y^{2}+\cdots+g_{r} Y^{r}
$$

with $g_{0}, g_{1}, \ldots, g_{r} \in \mathfrak{a}$. (Thus the ideal \mathfrak{b} consists of those elements of the ring S that can be considered as polynomials in the indeterminate Y with coefficients in the ideal \mathfrak{a} of R.)

Let $f \in R$ be a polynomial in the indeterminates $X_{1}, X_{2}, \ldots, X_{n}$ with the property that $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in V(\mathfrak{a})$, and let \mathfrak{c} be the ideal of S defined by

$$
\mathfrak{c}=\mathfrak{b}+(1-f Y) .
$$

(Here $(1-f Y)$ denotes the ideal of the polynomial ring S generated by the polynomial $1-f\left(X_{1}, X_{2}, \ldots, X_{n}\right) Y$.) Let $V(\mathfrak{c})$ be the subset of $(n+1)$ dimensional affine space $\mathbb{A}^{n+1}(K)$ consisting of all points $\left(x_{1}, x_{2}, \ldots, x_{n}, y\right) \in$ $\mathbb{A}^{n+1}(K)$ with the property that $h\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)=0$ for all $h \in \mathfrak{c}$. We claim that $V(\mathfrak{c})=\emptyset$.

Let $\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)$ be a point of $V(\mathfrak{b})$. Then $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=0$ for all $g \in \mathfrak{a}$, and therefore $\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in V(\mathfrak{a})$. But the polynomial f has the value zero at each point of $V(\mathfrak{a})$. It follows that the polynomial $1-f Y$ has the value 1 at each point of $V(\mathfrak{b})$, and therefore

$$
V(\mathfrak{c})=V(\mathfrak{b}) \cap V(1-f Y)=\emptyset .
$$

It now follows immediately from the Weak Nullstellensatz (Theorem 5.7) that \mathfrak{c} cannot be a proper ideal of S, and therefore $1 \in \mathfrak{c}$. Thus there exists a polynomial h belonging to the ideal \mathfrak{b} of S such that $h-1 \in(1-f Y)$. Moreover this polynomial h is of the form

$$
h\left(X_{1}, X_{2}, \ldots, X_{n}, Y\right)=\sum_{j=0}^{r} g_{j}\left(X_{1}, X_{2}, \ldots, X_{n}\right) Y^{j},
$$

where $g_{1}, g_{2}, \ldots, g_{n} \in \mathfrak{a}$.
Let $g \in \mathfrak{a}$ be defined by $g=\sum_{j=0}^{r} g_{j} f^{r-j}$. Now $g-f^{r}=g-f^{r} h+f^{r}(h-1)$.
Also

$$
g-f^{r} h=\sum_{j=0}^{r} g_{j} f^{r-j}\left(1-f^{j} Y^{j}\right) \in(1-f Y),
$$

since the polynomial $1-f^{j} Y^{j}$ is divisible by the polynomial $1-f Y$ for all positive integers j. It follows that $g-f^{r} \in(1-f Y)$. But the polynomial $g-f^{r}$
is a polynomial in the indeterminates $X_{1}, X_{2}, \ldots, X_{n}$, and, if non-zero, would be of degree zero when considered as a polynomial in the indeterminate Y with coefficients in the ring R. Also any non-zero element of the ideal ($1-$ $f Y)$ of S is divisible by the polynomial $1-f Y$, and is therefore of strictly positive degree when considered as a polynomial in the indeterminate Y with coefficients in R. We conclude, therefore that $g-f^{r}=0$. But $g \in \mathfrak{a}$. Therefore $f^{r} \in \mathfrak{a}$, as required.

