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5 Hilbert’s Nullstellensatz

5.1 Commutative Algebras of Finite Type

Definition Let K be a field. A unital ring R is said to be a K-algebra
if K ⊂ R, the multiplicative identity elements of K and R coincide, and
ab = ba for all a ∈ K and b ∈ R.

It follows from this definition that a unital commutative ring R is a K-
algebra if K ⊂ R and K and R have the same multiplicative identity element.
Note that if L:K is a field extension, then the field L is a unital K-algebra.

Definition Let K be a field, and let R1 and R2 be K-algebras. A ring
homomorphism ϕ:R1 → R2 is said to be a K-homomorphism if ϕ(k) = k for
all k ∈ K.

Given any subset A of a unital commutative K-algebra R, we denote by
K[A] the subring of R generated by K ∪ A (i.e., the smallest subring of R
containing K ∪ A). In particular, if a1, a2, . . . , ak are elements of R then we
denote by K[a1, a2, . . . , ak] the subring of R generated by K∪{a1, a2, . . . , ak}.
If R = K[A] then we say that the set A generates the K-algebra R.

Note that any element of K[a1, a2, . . . , ak] is of the form f(a1, a2, . . . , ak)
for some polynomial f in k independent indeterminates with coefficients in
K. Indeed the set of elements of R that are of this form is a subring of R,
and is clearly the smallest subring of R containing K ∪ {a1, a2, . . . , ak}.

Definition Let K be a field. A unital commutative ring R is said to be a K-
algebra of finite type if K ⊂ R, the identity elements of K and R coincide, and
there exists a finite subset a1, a2, . . . , ak of R such that R = K[a1, a2, . . . , ak].

Lemma 5.1 Let K be a field. Then every K-algebra of finite type is a
Noetherian ring.

Proof Let R be a K-algebra of finite type. Then there exist a1, a2, . . . , ak ∈
R such that R = K[a1, a2, . . . , ak]. Now it follows from the Hilbert Basis
Theorem that the ring K[x1, x2, . . . , xk] of polynomials in the independent
indeterminates x1, x2, . . . , xk with coefficients in K is a Noetherian ring (see
Corollary 3.25). Moreover R ∼= K[x1, x2, . . . , xk]/a, where a is the kernel of
the homomorphism

ε:K[x1, x2, . . . , xk]→ R

that sends f ∈ K[x1, x2, . . . , xk] to f(a1, a2, . . . , ak). (Note that the homo-
morphism ε is surjective; indeed the image of this homomorphism is a subring
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of R containing K and ai for i = 1, 2, . . . , k, and is therefore the whole of R.)
Thus R is isomorphic to the quotient of a Noetherian ring, and is therefore
itself Noetherian (see Lemma 3.22).

If K(α):K is a simple algebraic extension then K(α) is a K-algebra of
finite type. Indeed K(α) is a finite-dimensional vector space over K (see
Theorem 4.13). If a1, a2, . . . , ak span K(α) as a vector space over K then
clearly K(α) = K[a1, a2, . . . , ak].

5.2 Zariski’s Theorem

Proposition 5.2 Let K and L be fields, with K ⊂ L. Suppose that L:K is
a simple field extension and that L is a K-algebra of finite type. Then the
extension L:K is finite.

Proof The field L is a K-algebra of finite type, and therefore there exist
elements β1, β2, . . . , βm of L such that L = K[β1, β2, . . . , βm]. Also the field
extension L:K is simple, and therefore L = K(α) for some element α of
K. Now, given any element β of L there exist polynomials f and g in K(x)
such that g(α) 6= 0 and β = f(α)g(α)−1. Indeed one may readily verify
that the set of elements of L that may be expressed in the form f(α)g(α)−1

for some polynomials f, g ∈ K[x] with g(α) 6= 0 is a subfield of L which
contains K ∪ {α}. It is therefore the whole of L, since L = K(α). It follows
that there exist polynomials fi and gi in K[x] such that gi(α) 6= 0 and
βi = fi(α)gi(α)−1 for i = 1, 2, . . . ,m. Let e(x) = g1(x)g2(x) . . . , gm(x). We
shall show that if the element α of L were not algebraic over K then every
irreducible polynomial with coefficients in K would divide e(x),

Let p ∈ K[x] be an irreducible polynomial with coefficients in K, where
p(α) 6= 0. Now L = K[β1, β2, . . . , βm], and therefore every element of L is
expressible as a polynomial in β1, β2, . . . , βm with coefficients in K. Thus
there exists some polynomial Hp in m indeterminates, with coefficents in K,
such that

p(α)−1 = Hp(β1, β2, . . . , βm).

Let d be the total degree of H. One can readily verify that

e(α)dHp(β1, β2, . . . , βm) = q(α),

for some polynomial q(x) with coefficients in K. But then p(α)q(α) = e(α)d,
and therefore α is a zero of the polynomial pq − ed. If it were the case that
α were not algebraic over K then this polynomial pq − ed would be the zero
polynomial, and thus p(x)q(x) = e(x)d. But it follows from Proposition 4.5
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that an irreducible polynomial divides a product of polynomials if and only
if it divides at least one of the factors. Therefore the irreducible polynomial
p would be an irreducible factor of the polynomial e, and so would be an
irreducible factor of one of the polynomials g1, g2, . . . , gm. We see therefore
that if α were not algebraic over K then the polynomial e would be divisible
by every irreducible polynomial in K[x]. But this is impossible, because a
given polynomial in K[x] can have only finitely many irreducible factors,
whereas K[x] contains infinitely many irreducible polynomials (Lemma 4.4).
We conclude therefore that α must be algebraic over K. But any simple
algebraic field extension is finite (Theorem 4.13). Therefore L:K is finite, as
required.

Lemma 5.3 Suppose that K ⊂ A ⊂ B, where A and B are unital commu-
tative rings, and B is both a K-algebra of finite type and a finitely generated
A-module. Then A is also a K-algebra of finite type.

Proof There exist α1, α2, . . . , αm ∈ B such that B = K[α1, α2, . . . , αm],
since B is a K-algebra of finite type. Also there exist β1, β2, . . . , βn ∈ B such
that

B = Aβ1 + Aβ2 + · · ·+ Aβn,

since B is a finitely generated A-module. Moreover we can choose β1 = 1.
But then there exist elements λqi of A such that αq =

∑n
i=1 λqiβi for q =

1, 2, . . . , n. Also there exist elements µijk of A such that βiβj =
∑n

k=1 µijkβk
for i, j = 1, 2 . . . , n. Let

S = {λqi : 1 ≤ q ≤ m, 1 ≤ i ≤ n} ∪ {µijk : 1 ≤ i, j, k ≤ n},

let A0 = K[S], and let

B0 = A0β1 + A0β2 + · · ·+ A0βn.

Now each product βiβj is a linear combination of β1, β2, . . . , βn with coeffi-
cients µijk in A0, and therefore βiβj ∈ B0 for all i and j. It follows from
this that the product of any two elements of B0 must itself belong to B0.
Therefore B0 is a subring of B. Now K ⊂ B0, since K ⊂ A0 and β1 = 1.
Also αq ∈ B0 for q = 1, 2, . . . ,m. But B = K(α1, α2, · · ·αm). It follows that
B0 = B, and therefore B is a finitely-generated A0-module.

Now any K-algebra of finite type is a Noetherian ring (Lemma 5.1). It
follows that A0 is a Noetherian ring, and therefore any finitely-generated
module over A0 is Noetherian (see Corollary 3.21). In particular B is a
Noetherian A0-module, and therefore every submodule of B is a finitely-
generated A0-module. In particular, A is a finitely-generated A0-module.
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Let γ1, γ2, . . . , γp be a finite collection of elements of A that generate A as an
A0-module. Then any element a of A can be written in the form

a = a1γ1 + a2γ2 + · · ·+ apγp,

where al ∈ A0 for l = 1, 2, . . . , p. But each element of A0 can be expressed as
a polynomial in the elements λqi and µijk with coefficients in K. It follows
that each element of A can be expressed as a polynomial in the elements λqi,
µijk and γl (with coefficients in K), and thus A = K[T ], where

T = S ∪ {γl : 1 ≤ l ≤ p}.

Thus A is a K-algebra of finite type, as required.

Theorem 5.4 (Zariski) Let L:K be a field extension. Suppose that the
field L is a K-algebra of finite type. Then L:K is a finite extension of K.

Proof We prove the result by induction on the number of elements required
to generate L as a K-algebra. Thus suppose that L = K[α1, α2, . . . , αn], and
that the result is true for all field extensions L1:K1 with the property that L1

is generated as a K1-algebra by fewer than n elements (i.e., there exist ele-
ments β1, β2, . . . , βm of L1, where m < n, such that L1 = K1[β1, β2, . . . , βm]).
Let K1 = K(α1). Then L = K1[α2, α3, · · · , αn]. It follows from the in-
duction hypothesis that L:K1 is a finite field extension (and thus L is a
finitely-generated K1-module). It then follows from Lemma 5.3 that K1 is a
K-algebra of finite type.

But the extension K1:K is a simple extension. It therefore follows from
Proposition 5.2 that the extensionK1:K is finite. Thus both L:K1 andK1:K
are finite extensions. It follows from the Tower Law (Proposition 4.10) that
L:K is a finite extension, as required.

5.3 Hilbert’s Nullstellensatz

Proposition 5.5 Let K be an algebraically closed field, let R be a commu-
tative K-algebra of finite type, and let m be a maximal ideal of R. Then
there exists a surjective K-homomorphism ξ:R→ K from R to K such that
m = ker ξ.

Proof Let L = R/m, and let ϕ:R→ L denote the quotient homomorphism.
Then L is a field (Lemma 3.30). Now m = kerϕ and 1 6∈ m, and therefore
ϕ|K 6= 0. It follows that m ∩ K is a proper ideal of the field K. But
the only proper ideal of a field is the zero ideal (Lemma 3.4). Therefore
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m ∩K = {0}. It follows that the restriction of ϕ to K is injective and maps
K isomorphically onto a subfield of L. Let K1 = ϕ(K), and let ι:K → K1

be the isomorphism obtained on restricting ϕ:R → L to K. Then L:K1

is a field extension, and L is a K1-algebra of finite type. It follows from
Zariski’s Theorem (Theorem 5.4) that L:K1 is a finite field extension. But
then L = K1, since the field K1 is algebraically closed (Lemma 4.16). Let
ξ = ι−1 ◦ϕ. Then ξ:R→ K is the required K-homomorphism from R to K.

Theorem 5.6 Let K be an algebraically closed field, and let R be a com-
mutative K-algebra of finite type. Let a be a proper ideal of R. Then there
exists a K-homomorphism ξ:R→ K from R to K such that a ⊂ ker ξ.

Proof Every proper ideal of R is contained in some maximal ideal (The-
orem 3.31). Let m be a maximal ideal of R with a ⊂ m. It follows from
Proposition 5.5 that m = ker ξ for some K-homomorphism ξ:R→ K. Then
a ⊂ ker ξ, as required.

Theorem 5.7 (Weak Nullstellensatz) Let K be an algebraically closed field,
and let a be a proper ideal of the polynomial ring K[X1, X2, . . . , Xn], where
X1, X2, . . . , Xn are independent indeterminates. Then there exists some point
(a1, a2, . . . , an) of An(K) such that f(a1, a2, . . . , an) = 0 for all f ∈ a.

Proof Let R = K[X1, X2, . . . , Xn]. Then R is a K-algebra of finite type. It
follows from Theorem 5.6 that there exists a K-homomorphism ξ:R → K
such that a ⊂ ker ξ. Let ai = ξ(Xi) for i = 1, 2, . . . , n. Then ξ(f) =
f(a1, a2, . . . , an) for all f ∈ R. It follows that f(a1, a2, . . . , an) = 0 for all
f ∈ a, as required.

Theorem 5.8 (Strong Nullstellensatz) Let K be an algebraically closed field,
let a be an ideal of the polynomial ring K[X1, X2, . . . , Xn], and let f ∈
K[X1, X2, . . . , Xn] be a polynomial with the property that f(x1, x2, . . . , xn) =
0 for all (x1, x2, . . . , xn) ∈ V (a), where

V (a) = {(x1, x2, . . . , xn) ∈ An(K) : g(x1, x2, . . . , xn) = 0 for all g ∈ a}.

Then f r ∈ a for some natural number r.

Proof Let R = K[X1, X2, . . . , Xn], and let S denote the ring R[Y ] of polyno-
mials in a single indeterminate Y with coefficients in the ring R. Then S can
be viewed as the ring K[X1, X2, . . . , Xn, Y ] of polynomials in the n+ 1 inde-
terminate indeterminates X1, X2, . . . , Xn, Y with coefficients in the field K.
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The ideal a of R determines a corresponding ideal b of S consisting of those
elements of S that are of the form

g0 + g1Y + g2Y
2 + · · ·+ grY

r

with g0, g1, . . . , gr ∈ a. (Thus the ideal b consists of those elements of the
ring S that can be considered as polynomials in the indeterminate Y with
coefficients in the ideal a of R.)

Let f ∈ R be a polynomial in the indeterminates X1, X2, . . . , Xn with the
property that f(x1, x2, . . . , xn) = 0 for all (x1, x2, . . . , xn) ∈ V (a), and let c

be the ideal of S defined by

c = b + (1− fY ).

(Here (1− fY ) denotes the ideal of the polynomial ring S generated by the
polynomial 1 − f(X1, X2, . . . , Xn)Y .) Let V (c) be the subset of (n + 1)-
dimensional affine space An+1(K) consisting of all points (x1, x2, . . . , xn, y) ∈
A
n+1(K) with the property that h(x1, x2, . . . , xn, y) = 0 for all h ∈ c. We

claim that V (c) = ∅.
Let (x1, x2, . . . , xn, y) be a point of V (b). Then g(x1, x2, . . . , xn) = 0 for

all g ∈ a, and therefore (x1, x2, . . . , xn) ∈ V (a). But the polynomial f has
the value zero at each point of V (a). It follows that the polynomial 1− fY
has the value 1 at each point of V (b), and therefore

V (c) = V (b) ∩ V (1− fY ) = ∅.

It now follows immediately from the Weak Nullstellensatz (Theorem 5.7)
that c cannot be a proper ideal of S, and therefore 1 ∈ c. Thus there exists
a polynomial h belonging to the ideal b of S such that h − 1 ∈ (1 − fY ).
Moreover this polynomial h is of the form

h(X1, X2, . . . , Xn, Y ) =
r∑
j=0

gj(X1, X2, . . . , Xn)Y j,

where g1, g2, . . . , gn ∈ a.

Let g ∈ a be defined by g =
r∑
j=0

gjf
r−j. Now g−f r = g−f rh+f r(h−1).

Also

g − f rh =
r∑
j=0

gjf
r−j(1− f jY j) ∈ (1− fY ),

since the polynomial 1 − f jY j is divisible by the polynomial 1 − fY for all
positive integers j. It follows that g−f r ∈ (1−fY ). But the polynomial g−f r
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is a polynomial in the indeterminates X1, X2, . . . , Xn, and, if non-zero, would
be of degree zero when considered as a polynomial in the indeterminate Y
with coefficients in the ring R. Also any non-zero element of the ideal (1 −
fY ) of S is divisible by the polynomial 1 − fY , and is therefore of strictly
positive degree when considered as a polynomial in the indeterminate Y
with coefficients in R. We conclude, therefore that g − f r = 0. But g ∈ a.
Therefore f r ∈ a, as required.
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