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6 Introduction to Affine Schemes

6.1 Rings and Modules of Fractions

Let R be a unital commutative ring. A subset S of R is said to be a multi-
plicative subset if 1 ∈ S and ab ∈ S for all a ∈ S and b ∈ S.

Let M be a module over a unital commutative ring R, and let S be a
multiplicative subset of R. We define a relation ∼ on M ×S, where elements
(m, s) and (m′, s′) of M × S satisfy the relation (m, s) ∼ (m′, s′) if and only
if us′m = usm′ for some element u of S.

The relation ∼ on M × S is clearly reflexive and symmetric. It is also
transitive. Indeed if (m, s), (m′, s′) and (m′′, s′′) are elements of M × S, and
if (m, s) ∼ (m′, s′) and (m′, s′) ∼ (m′′, s′′), then there exist elements u and v
of S such that us′m = usm′ and vs′′m′ = vs′m′′. But then uvs′ ∈ S, and

(uvs′)(s′′m) = (vs′′)(us′m) = (vs′′)(usm′) = (us)(vs′′m′)

= (us)(vs′m′′) = (uvs′)(sm′′),

and hence (m, s) ∼ (m′′, s′′). This shows that the relation ∼ on M × S is
transitive. We conclude that the relation ∼ is an equivalence relation on
M × S. Let S−1M denote the set of equivalence classes arising from this
relation. Given any element (m, s) of M ×S, we denote by m/s the element
of S−1M that represents the equivalence class of (m, s). Note that ordered
pairs (m, s) and (m′/s′) in M × S satisfy the equation m/s = m′/s′ if and
only if there exists some element u of S such that us′m = usm′.

We claim that there is a well-defined operation of addition on the set
S−1M , defined such that

m1/s1 +m2/s2 = (s2m1 + s1m2)/(s1s2).

To verify this, let m1,m
′
1,m2,m

′
2 ∈M and s1, s

′
1, s2, s

′
2 ∈ S satisfy the equa-

tions m1/s1 = m′1/s
′
1 and m2/s2 = m′2/s

′
2 Then there exist elements u1 and

u2 of S such that such that u1s
′
1m1 = u1s1m

′
1 and u2s

′
2m2 = u2s2m

′
2. Then

(u1u2)(s′1s
′
2)(s2m1 + s1m2) = (u2s2s

′
2)(u1s

′
1m1) + (u1s1s

′
1)(u2s

′
2m2)

= (u2s2s
′
2)(u1s1m

′
1) + (u1s1s

′
1)(u2s2m

′
2)

= (u1u2)(s1s2)(s′2m
′
1 + s′1m

′
2)

and therefore

(s2m1 + s1m2)/(s1s2) = (s′2m
′
1 + s′1m

′
2)/(s′1s

′
2).
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This shows that the operation of addition on S−1M is well-defined. Moreover,
given elements m,m1,m2,m3 ∈ M and s, s1, s2, s3 ∈ S, it is easy to verify
that

m1/s1 +m2/s2 = m2/s2 +m1/s1,

(m1/s1 +m2/s2) +m3/s3 = (s2s3m1 + s1s3m2 + s1s2m3)/(s1s2s3)

= m1/s1 + (m2/s2 +m3/s3),

0/1 +m/s = m/s,

m/s+ (−m)/s = 0/s2 = 0/1.

It follows that S−1M is an Abelian group with respect to the operation of
addition. The zero element of this group is the element 0/1.

Any unital commutative ring R may be considered as a module over
itself. Thus, given any non-empty multiplicative subset S of R, we can form
an Abelian group S−1R. Each ordered pair (r, s) in R × S determines an
element r/s of S−1R. Moreover the elements r/s and r′/s′ determined by
ordered pairs (r, s) and (r′, s′) satisfy the equation r/s = r′/s′ if and only
if us′r = usr′ for some element u of S. The operation of addition on the
Abelian group S−1R is defined by the equation

r1/s1 + r2/s2 = (s2r1 + s1r2)/(s1s2)

for all r1, r2 ∈ R and s1, s2 ∈ S.
Let R be a unital commutative ring, let S be a non-empty multiplicative

subset of R, and let M be a module over the ring R. If r and r′ are elements
of R, m and m′ are elements of M , and s, s′, t and t′ are elements of S, and
if r/s = r′/s′ and m/t = m′/t′, then there exist elements u and v of S such
that us′r = usr′ and vt′m = vtm′. Then

(uv)(s′t′)(rm) = (uv)(st)(mm′),

and hence (rm)/(st) = (r′m′)(s′t′). It follows that there is a well-defined
operation that multiplies elements r/s of S−1R by elements m/t of S−1R,
where (r/s)(m/t) = (rm)/(st).

In particular we can define a multiplication operation on the Abelian
group S−1R by defining

(r1/s1)(r2/s2) = (r1r2)/s1s2

for all elements r1/s1 and r2/s2 of S−1R. This multiplication operation is
commutative and associative, and, for any element s of S, the element s/s
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of S−1R is a multiplicative identity element for S−1R. Also

(r/s)(r1/s1 + r2/s2) = (r/s)((s2r1 + s1r2)/s1s2)

= (s2rr1 + s1rr2)(ss1s2)

= (ss2rr1 + ss1rr2)(s2s1s2)

= (rr1)/(ss1) + (rr2)/(ss2)

= (r/s)(r1/s1) + (r/s)(r2/s2)

for all r, r1, r2 ∈ R and s, s1, s2 ∈ S, and therefore the operations of addi-
tion and multiplication on S−1R satisfy the distributive law. Therefore the
operations of addition and multiplication on S−1R therefore give S−1R the
structure of a unital commutative ring. Moreover it is a straightforward ex-
ercise to verify that if M is a module over the ring R, then the Abelian group
S−1M is a module over the ring S−1R, where (r/s)(m/t) = (rm)/(st) for all
r ∈ R, m ∈M and s, t ∈ S.

Example Let R be the ring Z of integers, and let S be the set Z∗ of
non-zero integers. Then S−1R represents the field Q of rational numbers.
Also Z∗−1

Z
n ∼= Q

n. Indeed the function from Z
∗−1
Z
n to Qn that sends

(m1, . . . ,mn)/s to (s−1m1, . . . , s
−1mn) for all integers m1, . . . ,mn and for all

non-zero integers s is well-defined, and is an isomorphism.
Any Abelian group may be regarded as a module over the ring Z of

integers. If A is a finite Abelian group then Z∗−1A = {0}. For there exists
an non-zero integer n such that na = 0 for all a ∈ A. (We can take n to be
the order |A| of the group.) Then a/s = (na)/ns = 0/ns = 0/1 for all a ∈ A
and s ∈ Z∗.

Example Let S be the set {1, 2, 4, 8, . . .} of non-negative powers of the inte-
ger 2. Then S−1

Z is the ring of dyadic rational numbers. (A dyadic rational
number is a rational number of the form m/2n for some integers m and n.)

Let R be an integral domain. Then the set R∗ of non-zero elements of
R is a multiplicative subset. Let Q(R) = R∗−1R. Then Q(R) is a field. Its
elements may be represented in the form r/s, where r, s ∈ R and s 6= 0.
Let r, r′, s and s′ be elements of R, where s and s′ are non-zero. Then
r/s = r′/s′ if and only if s′r = sr′. For it follows from the definition of
R∗−1R that if r/s = r′/s′ then there exists some non-zero element u of R
such that u(s′r − sr′) = 0. But then s′r − sr′ = 0, since the product of
non-zero elements of an integral domain is always non-zero. The field Q(R)
is referred to as the field of fractions of the integral domain R. There is a
homomorphism i:R→ Q(R) from R to Q(R), where i(r) = r/1 for all r ∈ R.
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If r1 and r2 are elements of the integral domain R and if r1/1 = r2/1 then
r1 = r2. It follows that the homomorphism i:R → Q(R) is injective, and
gives a natural embedding of the integral domain R in its field of fractions,
enabling one to view R as a subring of the field Q(R).

The field of fractions of the ring Z of integers is the field Q of rational
numbers.

6.2 The Spectrum of a Unital Commutative Ring

Let R be a unital commutative ring. A prime ideal of R is a proper ideal p

of R with the property that, given any two elements r1 and r2 of R for which
r1r2 ∈ p, either r1 ∈ p or r2 ∈ p.

Let SpecR denote the set of prime ideals of the ring R. For each ideal a

of R, let V (a) denote the subset of SpecR consisting of all prime ideals p

for which a ⊂ p. We claim that there is a well-defined topology on SpecR
whose closed sets are the sets that are of the form V (a) for some ideal a of
R.

Given any collection {aλ : λ ∈ Λ} of ideals of R, we can form their
sum Σλ∈Λaλ, which is the ideal consisting of all elements of R that can be
expressed as a finite sum of the form x1 +x2 + · · ·+xr where each summand
xi is an element of some ideal aλi belonging to the collection.

Also given any two ideals a and b of R, we can form their product ab.
This ideal ab is the ideal of R consisting of all elements of R that can be
expressed as a finite sum of the form x1y1 +x2y2 + · · ·+xryk with xi ∈ a and
yi ∈ b for i = 1, 2, . . . , r.

Proposition 6.1 Let R be a unital commutative ring, let SpecR be the spec-
trum of R, and for each ideal a of R let V (a) denote the subset of SpecR
defined by

V (a) = {p ∈ SpecR : a ⊂ p}.

Then these subsets of SpecR have the following properties:

(i) V ({0}) = SpecR and V (R) = ∅;

(ii)
⋂
λ∈Λ V (aλ) = V

(∑
λ∈Λ aλ

)
for every collection {aλ : λ ∈ Λ} of ideals

of R;

(iii) V (a) ∪ V (b) = V (a ∩ b) = V (ab) for all ideals a and b of R.

Thus there is a well-defined topology on SpecR whose closed sets are the sets
that are of the form V (a) for some ideal a of R.
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Proof The zero element of R belongs to every ideal, and therefore V ({0}) =
SpecR. Also V (R) = ∅ since every prime ideal is by definition a proper ideal
of R. This proves (i).

Let p be a prime ideal of R. Then

p ∈
⋂

λ∈Λ
V (aλ) ⇐⇒ p ∈ V (aλ) for all λ ∈ Λ

⇐⇒ aλ ⊂ p for all λ ∈ Λ

⇐⇒
∑
λ∈Λ

aλ ⊂ p

⇐⇒ p ∈ V
(∑

λ∈Λ
aλ

)
It follows that ⋂

λ∈Λ
V (aλ) = V

(∑
λ∈Λ

aλ

)
for any collection {aλ : λ ∈ Λ} of ideals in R. This proves (ii).

Now let a and b be ideals of R, and let ab denote the ideal consisting of
all elements of R that can be expressed as a finite sum of the form x1y1 +
x2y2 + · · ·+ xryk with xi ∈ a and yi ∈ b for i = 1, 2, . . . , r.

If p is a prime ideal of R, and if p 6∈ V (a) and p 6∈ V (b) then the sets a\p
and b \ p are non-empty. Let x ∈ a \ p and y ∈ b \ p. Then xy ∈ ab \ p, and
therefore p 6∈ V (ab). It follows from this that V (ab) ⊂ V (a) ∩ V (b). But
also ab ⊂ a ∩ b, a ∩ b ⊂ a and a ∩ b ⊂ b, and therefore V (a ∩ b) ⊂ V (ab),
V (a) ⊂ V (a ∩ b) and V (b) ∩ V (a ∩ b). Thus

V (a) ∪ V (b) ⊂ V (a ∩ b) ⊂ V (ab) ⊂ V (a) ∩ V (b).

and therefore
V (a) ∪ V (b) = V (a ∩ b) = V (ab).

This proves (iii).

We shall regard the spectrum SpecR of any unital commutative ring as
a topological space whose closed sets are the subsets of SpecR that are of
the form V (a) for some ideal a of R.

Let R1 and R2 be unital commutative rings, and let 1R1 and 1R2 denote
the multiplicative identity elements of R1 and R2. A function ϕR1 → R2 from
R1 to R2 is said to be a unital homomorphism if ϕ(x + y) = ϕ(x) + ϕ(y),
ϕ(xy) = ϕ(x)ϕ(y) and ϕ(1R1) = ϕ(1R2) for all x, y ∈ R1.

Lemma 6.2 Let ϕ:R1 → R2 be a unital homomorphism between unital com-
mutative rings R1 and R2. Then ϕ:R1 → R2 induces a continuous map
ϕ∗: SpecR2 → SpecR1 from SpecR2 to SpecR1, where ϕ∗(p) = ϕ−1(p) for
every prime ideal p of R2.
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Proof Let p be a prime ideal of R2. Now 1R2 6∈ p, because p is a proper
ideal of R2, and any ideal of R2 that contains the identity element 1R2 must
be the whole of R2. But then 1R1 6∈ ϕ−1(R2), since ϕ(1R1) = 1R2 . It follows
that ϕ−1(p) is a proper ideal of R1.

Let x and y be elements of R. Suppose that xy ∈ ϕ−1(p). Then
ϕ(x)ϕ(y) = ϕ(xy) and therefore ϕ(x)ϕ(y) ∈ p. But p is a prime ideal of
R2, and therefore either ϕ(x) ∈ p or ϕ(y) ∈ p. Thus either x ∈ ϕ−1(p)
or y ∈ ϕ−1(p). This shows that ϕ−1(p) is a prime ideal of R1. We con-
clude that there is a well-defined function ϕ∗: SpecR2 → SpecR1 such that
ϕ∗(p) = ϕ−1(p) for all prime ideals p of R2.

Let a be an ideal of R1, and let b be the ideal of R2 generated by ϕ(a).
(This ideal b is the intersection of all ideals c of R2 for which ϕ(a) ⊂ c.) Then

ϕ∗−1(V (a)) = {p ∈ SpecR2 : ϕ−1(p) ∈ V (a)}
= {p ∈ SpecR2 : a ⊂ ϕ−1(p)}
= {p ∈ SpecR2 : ϕ(a) ⊂ p}
= {p ∈ SpecR2 : b ⊂ p} = V (b).

Thus the preimage (under ϕ∗) of every closed set in SpecR1 is a closed set
in SpecR2. It follows from this that the function ϕ∗: SpecR2 → SpecR1 is
continuous, as required.

6.3 The Spectrum of a Quotient Ring

Let a be a proper ideal of a unital commutative ring R. Then the quotient
ring R/a is a unital commutative ring. The quotient homomorphism πa:R→
R/a is the surjective homomorphism that sends each element x of R to a+x.

Proposition 6.3 Let R be a unital commutative ring, let a be a proper ideal
of R, and let πa:R→ R/a be the corresponding quotient homomorphism onto
the quotient ring R/a. Then the induced map π∗a : SpecR/a → SpecR maps
SpecR/a homeomorphically onto the closed set V (a).

Proof Let q be a prime ideal of R/a. Then a ⊂ π−1
a (q) and therefore π∗a(q) ⊂

V (a). We conclude that π∗a(SpecR/a) ⊂ V (a).
Let p be a prime ideal of R belonging to V (a), and let q = πa(p). Now

a ⊂ p, and therefore π−1
a (q) = a + p = p. It follows from that that q must

be a proper ideal of R/a. Let x and y be elements of R with the property
that (a + x)(a + y) ∈ q. Then πa(xy) ∈ q, and therefore xy ∈ p. But then
either x ∈ p or y ∈ p, and thus either a + x ∈ q or a + y ∈ q. This shows

7



that q is a prime ideal of R/a. Moreover p = π∗a(q). We conclude that
π∗a(SpecR/a) = V (a).

If q1 and q2 are prime ideals of R/a, and if π∗a(q1) = π∗a(q2) then π−1
a (q1) =

π−1
a (q2), and therefore q1 = πa(π

∗
a(q1)) = πa(π

∗
a(q2)) = q2. It follows that

the map π∗a : SpecR/a → SpecR is injective. We have now shown that
π∗a : SpecR/a → SpecR maps the spectrum SpecR/a bijectively onto the
closed subset V (a) of the spectrum SpecR of R.

Let b is an ideal of R/a, and let q be a prime ideal of R/a. Then
πa(π

−1
a (b)) = b and πa(π

−1
a (q)) = q. It follows that π−1

a (b) ⊂ π−1
a (q) if

and only if b ⊂ q. But then

V (π−1
a (b)) ∩ V (a) = {p ∈ V (a) : π−1

a (b) ⊂ p}
= π∗a{q ∈ SpecR/a : π−1

a (b) ⊂ π−1
a (q)}

= π∗a{q ∈ SpecR/a : b ⊂ q} = π∗a(V (b))

Thus the continuous function π∗a : SpecR/a→ SpecR maps closed subsets of
SpecR/a onto closed subsets of V (a). But any continuous bijection between
topological spaces that maps closed sets onto closed sets is a homeomorphism.
(Indeed one can readily verify that the inverse of the bijection is continuous.)
We conclude therefore that the function π∗a maps SpecR/a homeomorphically
onto V (a), as required.

An element r of a ring R is said to be nilpotent if rn = 0 for some positive
integer n. The nilradical of a commutative ring is the set of all nilpotent
elements of the ring. Note that if r and s are elements of a commutative
ring and if rm = 0 and sn = 0 then (r + m)m+n = 0. Also (−r)m = 0, and
(tr)m = 0 for all t ∈ R. It follows that the nilradical of a commutative ring is
an ideal of that ring. This ideal is by definition the radical of the zero ideal.

Corollary 6.4 Let R be a unital commutative ring, and let N be the nil-
radical of R. Then the quotient homomorphism ν:R → R/N induces a
homeomorphism ν∗: SpecR/N → SpecR between the spectra of R/N and R.

Proof Let r be an element of the ring R, and let p be a prime ideal of R.
If rn ∈ p for some positive integer n then r ∈ p (since a product of elements
of R belongs to a prime ideal if and only if one of the factors belongs to
that prime ideal). It follows that a nilpotent element of R belongs to every
prime ideal of R, and that V (N) = SpecR, where N is the nilradical of R.
But, for any ideal a of R, the quotient homomorphism from R to a induces
a homeomorphism between SpecR/a and V (a). It follows that the quotient
homomorphism ν:R→ R/N induces a homeomorphism between SpecR and
SpecR/N .
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6.4 The Spectrum of a Ring of Fractions

Let R be a unital commutative ring, and let S be a non-empty multiplicative
subset of R. Then there is a well-defined natural homomorphism ιS:R →
S−1R from R to S−1R, where ιS(r) = r/1 for all r ∈ R.

Proposition 6.5 Let R be a unital commutative ring, let S be a multi-
plicative subset of R, and let ιS:R → S−1R be the natural homomorphism,
where ιS(r) = rs/s for all r ∈ R and s ∈ S. Then the induced map
ι∗S: SpecS−1R → SpecR maps SpecS−1R homeomorphically onto the sub-
space

{p ∈ SpecR : p ∩ S = ∅}

of SpecR.

Proof Let q be a prime ideal of S−1R, and let r and s be elements of R and
S respectively for which r/s ∈ q. Then ιS(r) ∈ q, since ιS(r) = s(r/s), and
therefore r ∈ ι∗S(q). Thus

q = {r/s ∈ S−1R : r ∈ ι∗S(q) and s ∈ S}.

It follows from this that the function ι∗S: SpecS−1R→ SpecR is injective.
If q is a prime ideal of S−1R, then and if s is an element of S then s/s 6∈ q,

because s/s is the identity element of S−1R, and no prime ideal of a unital
commutative ring contains the identity element. It follows that s 6∈ ι∗S(q)
for all q ∈ SpecS−1R. Thus ι∗S(SpecS−1R) ⊂ X, where X = {p ∈ SpecR :
p ∩ S = ∅}.

Now let p be an element of X, and let q be the ideal of S−1R generated
by ιS(p). Then

q = {x/s ∈ S−1R : x ∈ p and s ∈ S}.

Let x ∈ p and s, t ∈ S. Then s 6∈ p and t 6∈ p, and therefore st 6∈ p. But
xt ∈ p. Therefore xt 6= st for all x ∈ p and s, t ∈ S. It follows from the
definition of the ring of fractions S−1R that x/s 6= 1 for all x ∈ p and s ∈ S,
and therefore q is a proper ideal of S−1R.

Let x1/s1 and x2/s2 be elements of S−1R, where x1, x2 ∈ R and s1, s2 ∈ S.
Suppose that (x1/s1)(x2/s2) ∈ q. Then (x1x2)/(s1s2) = y/s for some y ∈ p

and s ∈ S. But then tsx1x2 = ts1s2y, and therefore tsx1x2 ∈ p, for some
t ∈ S. But ts ∈ S and p ∈ X, and therefore ts 6∈ p. It follows that x1x2 ∈ p,
since p is a prime ideal of R. But then either x1 ∈ p, in which case x1/s1 ∈ q,
or else x2 ∈ p, in which case x2/s2 ∈ q. We have thus shown that if a
product of elements of S−1R belongs to the proper ideal q, then at least one
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of the factors must belong to q. We conclude that q is a prime ideal of S−1R.
Moreover if x is an element of R and if ιS(x) ∈ q then sx/s = y/t for some
y ∈ p and s, t ∈ S, and therefore stux = suy for some u ∈ S. But tuy ∈ p

and stu 6∈ p. It follows that x ∈ p. We conclude that p = ι∗S(q) for any
prime ideal p of R satisfying p ∩ S = ∅, where q is the prime ideal of S−1R
generated by ιS(p). Thus ι∗S(SpecS−1R) = X, and the continuous function
ι∗S maps SpecS−1R bijectively onto X.

Let b be an ideal of S−1R, and let q be a prime ideal of S−1R. Suppose
that ι−1

S (b) ⊂ ι−1
S (q). Let x/s be an element of b, where x ∈ R and s ∈ S.

Then ιS(x) ∈ b, and therefore x ∈ ι−1
S (b). But then x ∈ ι−1

S (q), and therefore
x/s ∈ q. We conclude that ι−1

S (b) ⊂ ι−1
S (q) if and only if b ⊂ q. This shows

that ιS ∗ (V (b)) = X ∩V (ι−1
S (b), where V (b) = {q ∈ SpecS−1R : b ⊂ q} and

V (ι−1
S (b)) = {p ∈ SpecR : ι−1

S (b) ⊂ p}. Thus the continuous map ι∗S maps
closed subsets of SpecS−1R onto closed subsets of X, and therefore maps
SpecS−1R homeomorphically onto X, as required.

Let R be a unital commutative ring. Each element f of R determines an
open subset D(f) of SpecR, where

D(f) = {p ∈ SpecR : f 6∈ p}.

This open set is the complement of the closed set consisting of all prime
ideals of R that contain the ideal (f) generated by the element f of R. Note
that D(f) ∩ D(g) = D(fg) for all elements f and g of R. Indeed let p be
any prime ideal of R. Then fg 6∈ p if and only if f 6∈ p and g 6∈ p. Thus
p ∈ D(fg) if and only if p ∈ D(f) and p ∈ D(g). In particular D(fn) = D(f)
for all natural numbers n.

Let a be an ideal of the ring R. Then

SpecR \ V (a) = {p ∈ SpecR : a 6⊂ p}
=

⋃
f∈a
{p ∈ SpecR : f 6∈ p}

=
⋃

f∈a
D(f)

It follows that the collection of subsets of SpecR that are of the form D(f)
for some f ∈ R is a basis for the topology of SpecR, since each open subset
of SpecR is a union of open sets of this form.

Given any element f of R, let

Sf = {1, f, f 2, f3, . . .} = {fn : n ∈ Z and n ≥ 0}.

Then Sf is a non-empty multiplicative subset of R. Let Rf denote the corre-
sponding ring of fractions defined by defined by Rf = S−1

f R. An element of
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Rf can be represented in the form r/fm where r ∈ R and m is a non-negative
integer. Moreover two such elements r/fm and r′/fn of Rf satisfy the equa-
tion r/fm = r′/fn if and only if fn+lr = fm+lr′ for some non-negative
integer l.

The following result is an immediate corollary of Proposition 6.5.

Corollary 6.6 Let R be a unital commutative ring, let f be an element of
R, and let Rf = S−1

f R, where Sf is the multiplicative subset of R consisting
of all elements of R that are of the form fn for some non-negative integer n.
Let ιf :R → Rf be the homomorphism with ιf (r) = r/1 for all r ∈ R. Then
the induced map ι∗f : SpecRf → SpecR maps SpecRf homeomorphically onto
the open set D(f), where D(f) = {p ∈ SpecR : f 6∈ p}.

6.5 Intersections of Prime Ideals

Theorem 6.7 Let a be an ideal of a unital commutative ring R, let
√

a be
the radical of the ideal a, consisting of those elements r of R with the property
that rn ∈ a for some natural number n. Then

√
a is the intersection of all

prime ideals p of R satisfying a ⊂ p.

Proof Let f be an element of the ring R with the property that fn 6∈ a for
all natural numbers n, let Rf = S−1

f R, where Sf denotes the set consisting
of the powers fn of f for all non-negative integers n, let ιf :R → Rf denote
the homomorphism sending r ∈ R to r/1, and let b denote the ideal of Rf

generated by ιf (a). Then the elements of b can be represented as fractions
of the form x/fm where x ∈ a and m is some non-negative integer. We
claim that b is a proper ideal of Rf . If it were the case that b = Rf , there
would exist some element x of a, and some non-negative integer m such that
x/fm = 1/1 in Rf . But then there would exist some non-negative integer k
such that fkx = fk+m. But then fk+m ∈ a, because fkx ∈ a. But the
element f has been chosen such that fn 6∈ a for all positive integers n. It
follows that b 6= Rf , and therefore b is a proper ideal of Rf . But then there
exists a maximal ideal m of Rf such that b ⊂ m (Theorem 3.31). Moreover
m is a prime ideal of Rf (Lemma 3.35), and therefore m ∈ SpecRf . Let
p = ι∗f (m). Then p ∈ D(f), and therefore f 6∈ p. Also a ⊂ p. It follows from

this that
⋂

p∈V (a) p ⊂
√

a. But if r ∈
√

a, and if p is a prime ideal of R with

a ⊂ p then rn ∈ p for some positive integer n, and then r ∈ p (since p is a
prime ideal). It follows that

√
a ⊂

⋂
p∈V (a) p, and therefore

⋂
p∈V (a) p =

√
a,

as required.

11



Corollary 6.8 Let R be a unital commutative ring, let a be an ideal of R,
let V (a) = {p ∈ SpecR : a ⊂ p} and, for each element f of R, let D(f) =
{p ∈ SpecR : f 6∈ p}. Then

√
a = {f ∈ R : D(f) ∩ V (a) = ∅}.

Proof It follows from Theorem 6.7 that
√

a is the intersection of all prime
ideals p of R satisfying a ⊂ p. Thus an element f of R belongs to

√
a if and

only if f ∈ p for all p ∈ V (a), and thus if and only if D(f) ∩ V (a) = ∅, as
required.

Corollary 6.9 Let R be a unital commutative ring, and for each element f
of R, let D(f) = {p ∈ SpecR : f 6∈ p}. Then D(f) = 0 if and only if f is
nilpotent.

Proof The radical of the zero ideal {0} is the nilradical N of R, that consists
of all nilpotent elements of R. Moreover V (N) = SpecR. It follows from
Corollary 6.8 that N = {f ∈ R : D(f) = ∅}, as required.

We have seen that there is a topological space naturally associated to
any unital commutative ring R. This topological space is the spectrum of
the ring, and is denoted by SpecR. The elements of the spectrum are the
prime ideals of the ring. Each ideal a of R determines a closed subset V (a)
of the spectrum Spec(R), where V (a) = {p ∈ SpecR : a ⊂ p}. Moreover if
F is a closed subset of SpecR then F = V (a) for some ideal a of R. This
closed set V (a) is homeomorphic to the spectrum SpecR/a of the quotient
ring R/a (Proposition 6.3).

Each element f of R determines an open subset D(f) of SpecR, where
D(f) = {p ∈ SpecR : f 6∈ p}. These open subsets form a basis for the
topology of SpecR (i.e., every open subset of SpecR is a union of open sets
each of which is of the form D(f) for some f ∈ R). Moreover, given any
f ∈ R, the open set Df is homeomorphic to SpecRf , where Rf is the ring of
fractions S−1

f R determined by the multiplicative subset {1, f, f 2, f3, . . .} of
non-negative powers of f (Corollary 6.6).

6.6 Topological Properties of the Spectrum

Theorem 6.10 The spectrum SpecR of any unital commutative ring R is
a compact topological space.

Proof Let {Uλ:λ ∈ Λ} be any open cover of SpecR. Then there exists a
collection {aλ:λ ∈ Λ} of ideals of R such that

R \ Uλ = V (aλ) = {p ∈ SpecR : aλ ⊂ p}

12



for each open set Uλ in the given collection. Let the ideal a be the sum∑
λ∈Λ aλ of all the ideals aλ in this collection. Then

V (a) =
⋂

λ∈Λ
V (aλ) =

⋂
λ∈Λ

(SpecR \ Uλ) = SpecR \
⋃

λ∈Λ
Uλ = ∅.

Thus there is no prime ideal p of R with a ⊂ p. But any proper ideal of
R is contained in some maximal ideal (Theorem 3.31), and moreover every
maximal ideal is a prime ideal (Lemma 3.35). It follows that there is no
maximal ideal of R that contains the ideal a, and therefore this ideal can-
not be a proper ideal of R. We conclude that a = R, and therefore every
element of the ring R may be expressed as a finite sum where each of the
summands belongs to one of the ideals aλ. In particular there exist elements
x1, x2, . . . , xk of R and ideals aλ1 , aλ2 , . . . , aλk in the collection {aλ:λ ∈ Λ},
such that xi ∈ aλi for i = 1, 2, . . . , k and x1 + x2 + · · · + xk = 1. But then∑k

i=1 aλi = R, and therefore

SpecR \
k⋃
i=1

Uλi =
k⋂
i=1

V (aλ) = V

(
k∑
i=1

ak

)
= V (R) = ∅.

and therefore {Uλi : i = 1, 2, . . . , k} is an open cover of SpecR. Thus every
open cover of SpecR has a finite subcover. We conclude that SpecR is a
compact topological space, as required.

Corollary 6.11 Let a be an ideal of a unital commutative ring R. Then the
closed subset V (a) of SpecR is compact.

Proof This follows immediately from the result that a closed subset of a
compact topological space is compact.

Corollary 6.12 Let R be a unital commutative ring, let f be an element of
R, and let D(f) = {p ∈ SpecR : f 6∈ a}. Then D(f) is a compact subset of
SpecR.

Proof Let Sf = {1, f, f 2, . . .}, and let Rf = S−1
f R. Then the open set D(f)

is homeomorphic to the spectrum of the ring Rr (Corollary 6.6). But the
spectrum of any ring is a compact topological space (Theorem 6.10). There-
fore D(f) is compact, as required.

A unital commutative ring is Noetherian if every ideal of the ring is
finitely-generated.

Corollary 6.13 Let R be a Noetherian ring. Then every subset of the spec-
trum SpecR of R is compact.

13



Proof Let U be an open subset of SpecR. Then U = SpecR \ V (a) for
some ideal a of R (where V (a) = {p ∈ SpecR : a ⊂ p}. The ideal a is
finitely-generated, since R is Noetherian. Therefore there exists a finite set
f1, f2, . . . , fk of elements of a that generates a. Then V (a) is the intersection
of the closed sets V (fi) for i = 1, 2, . . . , k, where

V (fi) = {p ∈ SpecR : fi ∈ p} = SpecR \D(fi)

and therefore U = D(f1) ∪ D(f2) ∪ . . . D(fk). But each open set D(fi)
is compact (Corollary 6.12). Therefore U , being a finite union of compact
sets, is compact. Thus every open subset of SpecR is compact. It follows
immediately from this that every subset of SpecR is compact, for, given any
collection of open sets that covers some subset A of SpecR, the union U of
all those open sets is open, and is therefore compact, and is covered by the
open sets in the given collection. But then there exists some finite collection
of open sets belonging to the original collection which covers U , and therefore
covers A.

A topological space is said to be irreducible if the intersection of any two
non-empty open sets is non-empty. Every irreducible topological space is
connected.

Theorem 6.14 Let R be a unital commutative ring, let a be an ideal of R,
and let V (a) = {p ∈ SpecR : a ⊂ p}. Then V (a) is an irreducible topological
space if and only if the radical

√
a of a is a prime ideal of R.

Proof Suppose that V (a) is an irreducible topological space. Let r1 and r2

be elements of R \
√

a. Then D(r1)∩ V (a) and D(r2)∩ V (a) are non-empty,
since √

a = {f ∈ R : D(f) ∩ V (a) = ∅}

(Corollary 6.8). Now D(r1r2) = D(r1)∩D(r2), and therefore D(r1r2)∩V (a) is
the intersection of the non-empty open subsets D(r1)∩V (a) and D(r2)∩V (a)
of V (a). It follows from the irreducibility of V (a) that D(r1r2) ∩ V (a) is
itself non-empty, and therefore r1r2 ∈ R \

√
a. Thus if V (a) is an irreducible

topological space then the complement R\
√

a of
√

a is a multiplicative subset
of R, and therefore

√
a is a prime ideal of R.

Conversely suppose that
√

a is a prime ideal of R. Let U1 and U2 be
non-empty subsets of V (a). Any open subset of V (a) is a union of subsets
of V (a) each of which is of the form D(r) ∩ V (a) for some r ∈ R. Therefore
there exist elements r1 and r2 of R such that D(r1)∩V (a) and D(r2)∩V (a)
are non-empty, D(r1) ∩ V (a) ⊂ U1, and D(r2) ∩ V (a) ⊂ U2. Then r1 6∈

√
a
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and r2 6∈
√

a. But then r1r2 6∈
√

a, because the complement of a prime ideal
is a multiplicative subset of R It follows that D(r1r2) ∩ V (a) is non-empty.
But D(r1r2) ∩ V (a) is the intersection of D(r1) ∩ V (a) and D(r2) ∩ V (a).
Therefore D(r1r2) ∩ V (a) ⊂ U1 ∩ U2, and thus U1 ∩ U2 is non-empty. We
have thus shown that if

√
a is a prime ideal of R then the intersection of any

two non-empty open subsets of V (a) is non-empty. It follows that if
√

a is a
prime ideal then V (a) is irreducible, as required.

Corollary 6.15 The spectrum of an integral domain is an irreducible topo-
logical space.

Proof If R is an integral domain then its nilradical is the zero ideal, and
moreover the zero ideal is a prime ideal. Moreover V ({0}) = SpecR. It
therefore follows from Theorem 6.14 that SpecR is an irreducible topological
space.

Corollary 6.16 Let R be a unital commutative ring, and let N be the nilrad-
ical of R. Suppose that the spectrum SpecR of R is an irreducible topological
space. Then R/N is an integral domain.

Proof If SpecR is irreducible then N is a prime ideal of R, and therefore
R/N is an integral domain (Lemma 3.34).

6.7 Localization and the Structure Sheaf of a Unital
Commutative Ring

Let p be a prime ideal of a unital commutative ring R, and let Sp = R \ p.
Then S is a non-empty multiplicative subset of R. We denote by Rp the ring
of fractions defined by Rp = S−1

p R. Each element of Rp may be represented as
a fraction, which we will denote by (r/s)p, whose numerator r is an element
of R and whose denominator s is an element of R\p. Let r and r′ be elements
of R, and let s and s′ be elements of R\p. Then (r/s)p = (r′/s′)p if and only
if us′r = usr′ for some element u of R \ p. This ring Rp is referred to as the
localization of the ring R at the prime ideal p.

Similarly, given any module M over the unital commutative ring R, we
define the localization Mp of M at a prime ideal p of R to be the module
S−1

p M whose elements are represented as fractions (m/s)p, where m ∈M and
s ∈ R \ p. Two fractions (m/s)p and (m′/s′)p represent the same element of
Mp if and only if there exists some element u of R\p such that us′m = usm′.

Let OR denote the disjoint union of the rings Rp for all prime ideals p of
R, and let πR:OR → SpecR denote the function that sends elements of the
local ring Rp to the corresponding prime ideal p for each p ∈ SpecR.
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Also, given any R-module M , let M̃ denote the disjoint union of the
modules Mp for all prime ideals p of R, and let πM : M̃ → SpecR denote
the function that sends elements of the Rp-module Mp to the corresponding
prime ideal p for each p ∈ SpecR.

We shall prove that there are natural topologies defined on the sets OR
and M̃ with respect to which the surjective functions πR:OR → SpecR and
πM : M̃ → SpecR are local homeomorphisms.

We recall some results from general topology. Let X be a set, and let
B a collection of subsets of X. This collection B is said to be a basis for a
topology on X if there is a well-defined topology on X such that the open
subsets of X are those subsets of X that are unions of subsets belonging to
the collection B. In order that a collection B of subsets of X be a basis for a
topology on X, it is necessary and sufficient that the following two conditions
be satisfied:

(i) given any x ∈ X, there exists B ∈ B such that x ∈ B;

(ii) given B1, B2 ∈ B for which B1∩B2 is non-empty, and given x ∈ B1∩B2,
there exists B3 ∈ B such that x ∈ B3 and B3 ⊂ B1 ∩B2.

If we define the open sets in X to be those sets that are unions of sets
belonging to the collection B then condition (i) ensures that X is an open
subset of itself. The empty set is regarded as the union of an empty collection
of sets belonging to B, and is therefore an open set. Any union of open sets
is clearly an open set, and condition (ii) ensures that the intersection of two
subsets belonging to B is a union of subsets belonging to B, and therefore
ensures that the intersection of any two open sets is an open set. It follows
from this that any finite intersection of open sets is an open set. Thus any
collection B of subsets of X satisfying conditions (i) and (ii) does indeed give
rise in this way to a well-defined topology on X.

Let X and Y be topological spaces, and let f :X → Y be a continuous
function from X to Y . The function f is said to be a local homeomorphism
if, given any point x of X, there exists an open set U in X such that x ∈ U ,
f(U) is an open set in Y , and the restriction f |U of f to the open set U
defines a homeomorphism from U to f(U).

Proposition 6.17 Let R be a unital commutative ring, let M be a module
over the ring R, let M̃ be the disjoint union of the Rp-modules Mp for all
prime ideals p of R, and let πM : M̃ → SpecR be the surjective function that
sends all elements of Mp to the prime ideal p. For each ordered pair (m, s)
in M ×R, let

D̃(m, s) = {(m/s)p ∈ M̃ : p ∈ SpecR and s 6∈ p}.
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Then the collection of sets D̃(m, s) is a basis for a topology on M̃ , with respect
to which the surjective function πM : M̃ → SpecR is a local homeomorphism.

Proof Note that set D̃(m, s) is the empty set if sn = 0 for some positive
integer n, for in those cases s ∈ p for all p ∈ SpecR.

Let B denote the collection of subsets of M̃ that are of the form D̃(m, s)
for some (m, s) ∈ M × R. Now, given any element ρ of M̃ , there exist a
prime ideal p, and elements m and s of M and R \ p respectively, such that
ρ = (m/s)p. But then ρ ∈ D̃(m, s). It follows that every element of M̃
belongs at least one set in the collection B.

Let (m, s) and (m′, s′) be ordered pairs in M ×R, and let ρ ∈ D̃(m, s) ∩
D̃(m′, s′). Then ρ = (m/s)p = (m′/s′)p, and therefore there exists some
element t of R \ p such that ts′m = tsm′. But then

(m/s)q = (ts′m/tss′)q = (tsm′/tss′)q = (m′/s′)q

for all prime ideals q for which tss′ 6∈ q. It follows that ρ ∈ D̃(ts′m, tss′) and
D̃(ts′m, tss′) ⊂ D̃(m, s) ∩ D̃(m′, s′). We conclude from this that {D̃(m, s) :
(m, s) ∈ M × R} is a basis for a topology on M̃ . Henceforth we regard M̃
as a topological space, with the topology defined by this basis of open sets.

We now show that the function πM : M̃ → SpecR is continuous. Let
D(f) = {p ∈ SpecR : f 6∈ p} for each element f of R. Now (m/s)p =
(fm/fs)p for all (m, s) ∈M × R, and for all prime ideals p satisfying f 6∈ p

and s 6∈ p. It follows that D̃(m, s)∩ π−1
M (D(f)) = D̃(fm, fs) for all (m, s) ∈

M×R. We conclude that π−1
M (D(f)) is the union of the open sets D̃(fm, fs)

for all (m, s) ∈M×R, and is therefore itself an open set. But every open set
in SpecR is a union of open sets that are of the form D(f) for some f ∈ R.
It follows that the preimage of every open subset of SpecR is an open subset
of M̃ . Thus πM : M̃ → SpecR is continuous.

Now πM(D̃(m, s)) = D(s) for all (m, s) ∈ M × R. But every open
subset of M̃ is a union of sets of that are each of the form D̃(m, s) for some
(m, s) ∈M ×R. It follows that πM(U) is an open subset of SpecR for every
open subset U of M̃ .

Finally we note that the the function πMM̃ → SpecR maps the open
subset D̃(m, s) of M̃ injectively and continuously onto the open set D(s) for
all (m, s) ∈ M × R. But it also maps open sets to open sets. Therefore it
maps D̃(m, s) homeomorphically onto D(s). We conclude that the function
πMM̃ → SpecR is a local homeomorphism, as required.

Corollary 6.18 Let R be a unital commutative ring, let OR be the disjoint
union of the rings Rp for all prime ideals p of R, where Rp = (R \ p)−1R,
and let πR:OR → SpecR be the surjective function that sends elements of
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the ring Rp to p for all prime ideals p of R. For each pair (r, s) of elements
of R, let

D̃(r, s) = {(r/s)p ∈ OR : p ∈ SpecR and s 6∈ p}.

Then the collection of sets D̃(r, s) is a basis for a topology on OR, with respect
to which the surjective function πR:OR → SpecR is a local homeomorphism.

Proof The result is an immediate corollary of Proposition 6.17 on taking
the R-module M to be R itself (where the unital commutative ring R acts
on itself by left multiplication).

We shall henceforth regard OR and M̃ as topological spaces, with the
topologies defined by Proposition 6.17 and Corollary 6.18.

We shall refer to πR:OR → SpecR as the structure sheaf of the unital
commutative ring. The preimage π−1

R (p) of any element p of the spectrum of
R is referred to as the stalk of the sheaf over the prime ideal p. This stalk is
the localization Rp of the ring R at the prime ideal p.

Definition Let X be a topological space. A sheaf of rings over X consists
of a topological space O and a continuous surjective map π:O → X which
satisfies the following conditions:

(i) the surjective map π:O → X is a local homeomorphism;

(ii) at each point x of X, the stalk π−1({x}) of the sheaf over x is a ring;

(iii) the algebraic operations of addition and multiplication on the stalks
π−1({x}) of the sheaf determine continuous functions from Z to O,
where

Z = {(r1, r2) ∈ O ×O : π(r1) = π(r2)}.

Proposition 6.19 Let R be a unital commutative ring. Then the structure
sheaf πR:OR → SpecR of R is a sheaf of rings over the spectrum SpecR of
R.

Proof Let Z = {(ρ1, ρ2) ∈ OR×OR : πR(ρ1) = πR(ρ2)}, and let Σ:Z → OR
and and Π:Z → OR be the functions defined such that Σ(ρ1, ρ2) = ρ1 + ρ2

and Π(ρ1, ρ2) = ρ1ρ2 for all for all (ρ1, ρ2) ∈ Z. We must prove that these
functions Σ and Π are continuous.

Let

D(s) = {p ∈ SpecR : s 6∈ p},
D̃(r, s) = {(r/s)p : p ∈ SpecR and s 6∈ p}

18



for all r, s ∈ R. Now, given an element (ρ1, ρ2) of Z, there exist elements x, y,
f and g of R, and a prime ideal p of R such that p ∈ D(f)∩D(g), ρ1 = (x/f)p

and ρ2 = (y/g)p. But D(f) ∩ D(g) = D(fg), (x/f)p = (gx/fg)p, (y/g)p =
(fy/fg)p, (x/f)p + (y/g)p = (gx + fy/fg)p, and (x/f)p(y/g)p = (xy/fg)p.
Let λ:D(fg)→ OR and µ:D(fg)→ OR be the sections of πR:OR → SpecR
defined such that λ(q) = (gx + fy/fg)q and µ(q) = (xy/fg)q for all q ∈
D(fg). Then the functions λ and µ are continuous, being the inverses of the
homeomorphisms from D̃(gx+ fy, fg) and D̃(xy, fg) to D(fg) obtained on
restricting the function πR:OR → SpecR to D̃(gx + fy, fg) and D̃(xy, fg)
respectively. Moreover Σ(ρ′1, ρ

′
2) = λ(πR(ρ1)) and Π(ρ′1, ρ

′
2) = µ(πR(ρ1)) for

all (ρ′1, ρ
′
2) ∈ Z ∩ (D̃(gx, fg) × D̃(fy, fg)). It follows from this that the

restrictions of the addition and multiplication functions Σ and Π to the open
neighbourhood Z ∩ (D̃(gx, fg)× D̃(fy, fg)) of (ρ1, ρ2) in Z are continuous.
This proves the continuity of the functions Σ:Z → OR and Π:Z → OR at
any point (ρ1, ρ2) of Z, as required.

Definition Let X be a topological space, and let π0:O → X be a sheaf
of rings over X. A sheaf of O-modules over X consists of a topological
spaceM and a continuous surjective map π:M→ X satisfying the following
conditions:

(i) the surjective map π:M→ X is a local homeomorphism;

(ii) at each point x of X, the stalk π−1({x}) of the sheaf M over x is a
module over the corresponding stalk π−1

0 ({x}) of the sheaf O.

(iii) the algebraic operations of addition and multiplication on the stalks of
the sheaves determine continuous functions Σ:X → M and Π:Y →
M,where

X = {(m1,m2) ∈M×M : π(m1) = π(m2)}.
Y = {(r,m) ∈ O ×M : π0(r) = π(m)}.

Proposition 6.20 Let R be a unital commutative ring, and let M be a
module over the ring R. Then M determines a sheaf πM : M̃ → SpecR
of OR-modules over the spectrum SpecR of R, where πM(p) = Mp for all
p ∈ SpecR.

Proof The proof of Proposition 6.19 may easily be adapted to prove the
continuity of the relevant functions determined by the algebraic operations
on the stalks of the sheaves.
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6.8 Affine Schemes

Let R be a unital commutative ring. The affine scheme associated with R
consists of the space SpecR of prime ideals of R, with the Zariski topology,
together with the structural sheaf πR:OR → SpecR of the ring R. The affine
scheme associated with a unital commutative ring R is usually denoted by
SpecR.

Such an affine scheme is an example of a ringed space. A ringed space
(X,O) consists of a topological space together with a sheaf O of rings over
that space X.

Affine schemes are examples of schemes. A scheme is a ringed space
(X,O) with the property that, given any point of the space, there exists an
open set U , containing that point, such that U , together with the restric-
tion O|U of the structure sheaf O to that subset, are isomorphic to the affine
scheme associated to some unital commutative ring. Such an open set is re-
ferred to as an affine open set. (Here the unital commutative ring associated
to an affine open set depends on the open set: different affine open sets will
in general have different rings associated with them.)

6.9 Continuous Sections of the Structure Sheaf

Let πR:OR → SpecR be the structure sheaf of a unital commutative ring R.
A section σ:D → OR of this sheaf, defined over a subset D of SpecR, is a
function with the property that πR(σ(p)) = p for all p ∈ D.

Theorem 6.21 Let πR:OR → SpecR be the structure sheaf of a unital com-
mutative ring R, and let x and f be elements of R. Suppose that (x/f)p = 0
for all elements p of D(f). Then there exists some non-negative integer n
such that fnx = 0.

Proof It follows from the definition of the ring Rp, where Rp = (R \ p)−1R,
that there exists an element hp of R \ p for each element p in D(f) such
that hpx = 0. Let a be the ideal of R generated by {hp : p ∈ D(f)}, and
let V (a) = {q ∈ SpecR : a ⊂ q}. If p ∈ D(f) then hp 6∈ p and therefore
p 6∈ V (a). Thus D(f) ∩ V (a) = ∅. It now follows from Corollary 6.8 that
f ∈
√

a, and therefore there exists some natural number n such that fn ∈ a.
But then there exist p1, p2, . . . , pk ∈ D(f) and u1, u2, . . . , uk ∈ R such that

fn =
k∑
i=1

uihpi . But then fnx =
k∑
i=1

uihpix = 0, as required.
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Corollary 6.22 Let πR:OR → SpecR be the structure sheaf of a unital
commutative ring R, and let x be an element of R. Suppose that (x/1)p = 0
for all p ∈ SpecR. Then x = 0.

Corollary 6.23 Let πR:OR → SpecR be the structure sheaf of a unital
commutative ring R, and let x, y, f and g be elements of R. Suppose that
(x/f)p = (y/g)p for all elements p of D(fg). Then there exists some non-
negative integer n such that fngn+1x = gnfn+1y.

Proof The elements x, y, f and g have the property that (gx−fy/fg)p = 0
for all p ∈ D(fg). It follows from Theorem 6.21 that there exists some
natural number n such that (fg)n(gx− fy) = 0. The result follows.

Theorem 6.24 Let πR:OR → SpecR be the structure sheaf of a unital com-
mutative ring R, let σ: SpecR→ OR be a continuous section of the structure
sheaf. Then there exists an element r of R such that σ(p) = (r/1)p for all
p ∈ SpecR.

Proof Let

D(f) = {p ∈ SpecR : f 6∈ p},
D̃(x, f) = {(x/f)p ∈ OR : p ∈ SpecR and f 6∈ p}

for all x, f ∈ R. The collection of open sets D̃(x, f) is a basis for the topology
of OR. (Proposition 6.18). Let p be a prime ideal of R, and let x and
f be elements of R such that σ(p) = (x/f)p. Then σ(p) ∈ D̃(x, f). It
follows from the continuity of σ: SpecR→ OR that σ−1(D̃(x, f)) is an open
neighbourhood of p. Now the collection {D(g) : g ∈ R} of open sets is a
basis for the topology of SpecR. It follows that there exists some element g
of R such that p ∈ D(g) and D(g) ⊂ D(f). Let xp = gx and fp = gf . Then
σ(q) = (x/f)q = (xp/fp)q for all q ∈ D(fp). The collection {D(fp) : p ∈
SpecR} of open sets is an open cover of SpecR. But SpecR is compact. It
follows that there is a finite set p1, p2, . . . , pk of prime ideals of R such that

SpecR = D(fp1) ∪D(fp2) ∪ · · · ∪D(fpK ).

Let xi = xpi and fi = fpi for i = 1, 2, . . . , k. Then σ(p) = (xi/fi)p for all
p ∈ D(fi). It follows that if i and j are distinct integers between 1 and k then
(xi/fi)p = (xj/fj)p for all p ∈ D(fifj). It then follows from Corollary 6.23
that there exists some non-negative integer n such that fni f

n+1
j xi = fnj f

n+1
i xj.

Moreover we can choose the value of n large enough to ensure that these
identities hold simultaneously for all distinct pairs of integers i and j be-
tween 1 and k. Now the union of the open sets D(fi) is the whole of the
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spectrum SpecR of R. Moreover D(fi) = D(fn+1
i ) for i = 1, 2, . . . , k. It

follows that there is no prime ideal of R that contains all of the elements
fn+1

1 , fn+1
2 , . . . , fn+1

k , and therefore the ideal of R generated by these ele-
ments is the whole of R. It follows that there exist elements u1, u2, . . . , uk of
R such that

u1f
n+1
1 + u2f

n+1
2 + · · ·+ ukf

n+1
k = 1.

Let
r = u1f

n
1 x1 + u2f

n
2 x2 + · · ·+ ukf

n
k xk.

Then

fn+1
i r =

k∑
j=1

ujf
n+1
i fnj xj =

k∑
j=1

ujf
n+1
j fni xi = fni xi,

for i = 1, 2, . . . , k. Thus if p is a prime ideal of R and and if p ∈ D(fi)
then (r/1)p = (xi/fi)p = σ(p). But every point of SpecR belongs to at least
one of the open sets D(fi). Therefore (r/1)p = σ(p) for all p ∈ SpecR, as
required.

It follows easily from the definition of a sheaf that the the sum and product
of continuous sections of a sheaf of rings are themselves continuous sections
of that sheaf. The set of continuous sections of a sheaf of ring is therefore
itself a ring.

Corollary 6.25 Let R be a unital commutative ring. Then R is isomorphic
to the ring of continuous sections of the structure sheaf πR:OR → SpecR.

Proof For each r ∈ R, let σr: SpecR → OR be defined by σr(p) = (r/1)p.
Then the function mapping an element r of the ring R to the section σr
of the structure sheaf is a homomorphism of rings. It follows from Corol-
lary 6.22 that this homomorphism is injective. It follows from Theorem 6.24
that the homomorphism is surjective. Therefore this homomorphism is an
isomorphism of rings

LetR be a ring, let f be an element ofR, letD(f) = {p ∈ SpecR : f 6∈ p},
and let Rf = S−1

f R, where Sf = {1, f, f 2, . . .}. Then the function ιf :R→ Rf

that sends r to r/1 for all r ∈ R induces a homeomorphism ι∗f : SpecRf →
D(f) from SpecRf to D(f) (Corollary 6.6). Let πR:OR → SpecR and
πRf :ORf → SpecRf be the structure sheaves of R and Rf respectively. One
can readily verify that if q is a prime ideal of Rf , and if p = ι∗f (q), then the
ring (Rf )q is isomorphic to Rp, where Rp = (R \ p)−1R and where (Rf )q =
(Rf \q)−1Rf . Indeed the function that sends ((r/fm)/(s/fn))q to (rfn/sfm)p

for all r ∈ R and s ∈ R\p is an isomorphism from (Rf )q to Rp. It follows that
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the stalks of the structure sheaves of Rf and R over q and p respectively are
isomorphic. Moreover one can readily check that these isomorphisms combine
to give a homeomorphism mapping ORf onto the open subset π−1

R (D(f)) of
OR. The homeomorphism maps the stalk of the structure sheaf of Rf over
q isomorphically onto the stalk of the structure sheaf of R over ι∗f (q). It
follows from this that ring of continuous sections of the structure sheaf of
R defined over D(f) is isomorphic to the ring of continuous sections of the
structure sheaf of Rf . The following result therefore follows directly from
Corollary 6.25.

Corollary 6.26 Let R be a unital commutative ring, let f be an element
of R, and let Rf = S−1

f R, where S−1
f = {1, f, f 2, . . .}. Then Rf is isomor-

phic to the ring of continuous sections σ:D(f) → OR of the structure sheaf
πR:OR → SpecR defined over the open set D(f) of SpecR.

6.10 The Structural Sheaf of an Integral Domain

The theory of the structure sheaf of a commutative ring simplifies somewhat
when the ring is an integral domain. This is a consequence of the fact that
that the various rings of fractions determined by multiplicative subsets of the
integral domain can all be embedded in the field of fractions of that integral
domain.

Let R be an integral domain. The set R \ {0} of non-zero elements of R
is then a multiplicative set, and we can therefore form a corresponding ring
of fractions K, where K = (R\{0})−1R. Moreover K is a field. It is referred
to as the field of fractions of the integral domain R. Any element of K may
be represented by a quotient of the form r/s, where r and s are elements of
R and s 6= 0. Let r, r′, s and s′ be elements of R, where s 6= 0 and s′ 6= 0.
Then r/s = r′/s′ if only if s′r = sr′.

Now let S be a multiplicative subset of the integral domain, all of whose
elements are non-zero. An element of the corresponding ring of fractions
S−1R is represented as a fraction r/s, where r ∈ R and s ∈ S. Let r and
r′ be elements of R, and let s and s′ be elements of S. Then r/s = r′/s′

in the ring S−1R if and only if there exists some element t of S such that
ts′r = tsr′, and thus if and only if there exists some element t of S such that
t(s′r − sr′) = 0. But the product non-zero elements of an integral domain
is always non-zero, and the elements of the multiplicative subset S are all
non-zero. It follows that r/s = r′/s′ in the ring S−1R if and only if s′r = sr′,
and thus if and only if r/s = r′/s′ in K, where K is the field of fractions of
R. It follows that S−1R may be regarded as a subring of K.
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In particular Rp may be regarded as a subring of K for each prime ideal p

of R. Similarly, if Sf = {1, f, f 2, . . .} for some non-zero element f of R, and
if Rf = S−1

f R then Rf may be regarded as a subring of K.
Let πR:OR → SpecR be the structure sheaf of the integral domain R,

and let K be the field of fractions of R. Then each stalk of the structure
sheaf may be regarded as a subring of K. There is therefore a There is a
injective function ε:OR → (SpecR)×K which sends (r/s)p to (p, r/s) for all
(r/s)p ∈ Rp. Now the topology on SpecR and the discrete topology on K
together determine a product topology on (SpecR)×K. One can show that
the injective function ε:OR → (SpecR) × K maps OR homeomorphically
onto its range, which is a subset of (SpecR) ×K. The continuous sections
of the structure sheaf then correspond to constant functions from SpecR to
K.

In the case where the unital commutive ring under consideration is an
integral domain, Theorem 6.24 then corresponds to the following theorem.

Theorem 6.27 Let R be an integral domain and, for each prime ideal p of
R, let Rp = (R \ p)−1R. Then

⋂
p∈SpecRRp = R.

6.11 Rings of Congruence Classes

In order to get some idea of how the theory of affine schemes applies to rings
that are not integral domains, it is worthwhile to consider the case of the
ring Z/mZ where m is a composite number.

Thus let m be a composite number satisfying m > 1, and let R = Z/mZ.
We express m as a product of the form m = pn1

1 p
n2
2 · · · p

nk
k , where p1, . . . , pk

are prime numbers and k > 1. Then each of the prime numbers pi determines
a corresponding prime ideal piR of R, for i = 1, 2, . . . , k, where pi = pZ/mZ.
The spectrum of SpecR in then represented by the set {p1, p2, . . . , pk} con-
sisting of the prime divisors of R, and is a finite set. Moreover the topology
on this finite set is the discrete topology.

We now show that RpiR
∼= Z/miZ for i = 1, 2, . . . , k where mi = pnii .

Now each element of R is of the form [x]m for some integer x, where [x]m
denotes the congruence class of m. Let p = piR for some prime divisor pi of
R, and let ιp:R → Rp be the homomorphism that maps an element [x]m of
R to ([x]m/[1]m)p. Now

R \ p = {[t]m : t ∈ Z and t is coprime to p}.

It follows that ιp([x]m) = 0 if and only if [tx]m = 0 for some integer t coprime
to p, and thus if and only if m divides tx for some integer t coprime to p.
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But there exists an integer t for which tx is divisible by m if and only if m is
itself divisible by mi. Thus an element [x]m of R satisfies ιp([x]m) = 0 if and
only if x is divisible by mi. Moreover if s is any integer coprime to pi then,
given any integer x, there exists some integer y such that x ≡ symodmi.
But then there exists some integer t coprime to ti such that tx ≡ tsymodm.
This ensures that ([x]m/[s]m)p = ([y]m/[1]m)p = ιp([y]m). We conclude that
ιp:R→ Rp is surjective. It follows that Rp

∼= R/ ker ιp ∼= Z/miZ.
The result of Theorem 6.24 corresponds to the fact that

R ∼= Rp1R ×Rp2R · · · ×RpkR,

and thus to the fact that

Z/mZ ∼= (Z/m1Z)× (Z/m2Z)× · · · × (Z/mkZ),

where mi = pnii for i = 1, 2, . . . , k. This result is a form of the Chinese
Remainder Theorem.

25


