
Course 311: Galois Theory Problems

Academic Year 2007–8

1. Use Eisenstein’s criterion to verify that the following polynomials are
irreducible over Q:—

(i) x2 − 2; (ii) x3 + 9x + 3; (iii) x5 + 26x + 52.

2. Let p be a prime number. Use the fact that the binomial coefficient(
p

k

)
is divisible by p for all integers k satisfying 0 < k < p to show

that if xf(x) = (x + 1)p − 1 then the polynomial f is irreducible over
Q.

The cyclotomic polynomial Φp(x) is defined by Φp(x) = 1 + x + x2 +
· · ·+xp−1 for each prime number p. Show that xΦp(x+1) = (x+1)p−1,
and hence show that the cyclotomic polynomial Φp is irreducible over
Q for all prime numbers p.

3. The Fundamental Theorem of Algebra ensures that every non-constant
polynomial with complex coefficients factors as a product of polynomi-
als of degree one. Use this result to show that a non-constant polyno-
mial with real coefficients is irreducible over the field R of real numbers
if and only if it is either a polynomial of the form ax+b with a 6= 0 or a
quadratic polynomial of the form ax2 + bx+ c with a 6= 0 and b2 < 4ac.

4. A complex number z is said to be algebraic if there f(z) = 0 for some
non-zero polynomial f with rational coefficients. Show that z ∈ C is
algebraic if and only if Q(z): Q is a finite extension Then use the Tower
Law to prove that the set of all algebraic numbers is a subfield of C.

5. Let L be a splitting field for a polynomial of degree n with coefficients
in K. Prove that [L: K] ≤ n!.

6. (a) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3) and [Q(
√

2,
√

3), Q] = 4.
What is the degree of the minimum polynomial of

√
2 +

√
3 over Q?

(b) Show that
√

2 +
√

3 is a root of the polynomial x4 − 10x2 + 1,
and thus show that this polynomial is an irreducible polynomial whose
splitting field over Q is Q(

√
2,
√

3).

(c) Find all Q-automorphisms of Q(
√

2,
√

3), and show that they con-
stitute a group of order 4 isomorphic to a direct product of two cyclic
groups of order 2.
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7. Let K be a field of characteristic p, where p is prime.

(a) Show that f ∈ K[x] satisfies Df = 0 if and only if f(x) = g(xp)
for some g ∈ K[x].

(b) Let h(x) = a0 + a1x + a2x
2 + · · ·+ anx

n, where a0, a1, . . . , an ∈ K.
Show that (h(x))p = g(xp), where g(x) = ap

0 + ap
1x + ap

2x
2 + · · ·+ ap

nx
n.

(c) Now suppose that Frobenius monomorphism of K is an automor-
phism of K. Show that f ∈ K[x] satisfies Df = 0 if and only if
f(x) = (h(x))p for some h ∈ K[x]. Hence show that Df 6= 0 for any
irreducible polynomial f in K[x].

(d) Use these results to show that every algebraic extension L: K of a
finite field K is separable.

8. For each positive integer n, let ωn be the primitive nth root of unity in
C given by ωn = exp(2πi/n), where i =

√
−1.

(a) Show that the field extensions Q(ωn): Q and Q(ωn, i): Q are normal
field extensions for all positive integers n.

(b) Show that the minimum polynomial of ωp over Q is the cyclotomic
polynomial Φp(x) given by Φp(x) = 1+x+x2 + · · ·+xp−1. Hence show
that [Q(ωp): Q] = p− 1 if p is prime.

(c) Let p be prime and let αk = ωp2ωk
p = exp(2πi(1 + kp)/p2) for all

integers k. Note that α0 = ωp2 and αk = αl if and only if k ≡ l mod p.
Show that if θ is an automorphism of Q(ωp2) which fixes Q(ωp) then
there exists some integer m such that θ(αk) = αk+m for all integers k.
Hence show that α0, α1, . . . , αp−1 all belong to the orbit of ωp2 under
the action of the Galois group Γ(Q(ωp2): Q(ωp)). Use this result to
show that [Q(ωp2): Q(ωp)] = p and [Q(ωp2): Q] = p(p− 1).

9. Show that the field Q(ξ, ω) is a splitting field for the polynomial x5 −
2 over Q, where ω = ω5 = exp(2πi/5) and ξ = 5

√
2. Show that

[Q(ξ, ω): Q] = 20 and the Galois Γ(Q(ξ, ω): Q) consists of the auto-
morphisms θr,s for r = 1, 2, 3, 4 and s = 0, 1, 2, 3, 4, where θr,s(ω) = ωr

and θr,s(ξ) = ωsξ.
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10. Let f be a monic polynomial of degree n with coefficients in a field K.
Then

f(x) = (x− α1)(x− α2) · · · (x− αn),

where α1, α2, . . . , αn are the roots of f in some splitting field L for f
over K. The discriminant of the polynomial f is the quantity δ2, where
δ is the product

∏
1≤i<j≤n

(αj − αi) of the quantities αj − αi taken over

all pairs of integers i and j satisfying 1 ≤ i < j ≤ n.

Show that the quantity δ changes sign whenever αi is interchanged
with αi+1 for some i between 1 and n − 1. Hence show that θ(δ) = δ
for all automorphisms θ in the Galois group Γ(L: K) that induce even
permutations of the roots of f , and θ(δ) = −δ for all automorphisms θ
in Γ(L: K) that induce odd permutations of the roots. Then apply the
Galois correspondence to show that the discriminant δ2 of the polyno-
mial f belongs to the field K containing the coefficients of f , and the
field K(δ) is the fixed field of the subgroup of Γ(L: K) consisting of
those automorphisms in Γ(L: K) that induce even permutations of the
roots of f . Hence show that δ ∈ K if and only if all automorphisms in
the Galois group Γ(L: K) induce even permutations of the roots of f .

11. (a) Show that the discriminant of the quadratic polynomial x2 + bx+ c
is b2 − 4c.

(b) Show that the discriminant of the cubic polynomial x3 − px− q is
4p2 − 27q2.

12. Let f(x) = x3−px− q be a cubic polynomial with complex coefficients
p and q, and let the complex numbers α, β and γ be the roots of f .

(a) Give formulae for the coefficients p and q of f in terms of the roots
α, β and γ of f , and verify that α + β + γ = 0 and

α3 + β3 + γ3 = 3αβγ = 3q

(b) Let λ = α + ωβ + ω2γ and µ = α + ω2β + ωγ, where ω is the
complex cube root of unity given by ω = 1

2
(−1 +

√
3i). Verify that

1 + ω + ω2 = 0, and use this result to show that

α =
1

3
(λ + µ), β =

1

3
(ω2λ + ωµ), γ =

1

3
(ωλ + ω2µ).

3



(c) Let K be the subfield Q(p, q) of C generated by the coefficients of
the polynomial f , and let M be a splitting field for the polynomial f
over K(ω). Show that the extension M : K is normal, and is thus a
Galois extension. Show that any automorphism in the Galois group
Γ(M : K) permutes the roots α, β and γ of f and either fixes ω or else
sends ω to ω2.

(d) Let θ ∈ Γ(M : K) be a K-automorphism of M . Suppose that

θ(α) = β, θ(β) = γ, θ(γ) = α.

Show that if θ(ω) = ω then θ(λ) = ω2λ and θ(µ) = ωµ. Show also that
if θ(ω) = ω2 then θ(λ) = ωµ and θ(µ) = ω2λ. Hence show that λµ
and λ3 + µ3 are fixed by any automorphism in Γ(M : K) that cyclically
permutes α, β, γ. Show also that the quantities λµ and λ3 + µ3 are
also fixed by any automorphism in Γ(M : K) that interchanges two of
the roots of f whilst leaving the third root fixed. Hence prove that λµ
and λ3 +µ3 belong to the field K generated by the coefficients of f and
can therefore be expressed as rational functions of p and q.

(e) Show by direct calculation that λµ = 3p and λ3 +µ3 = 27q. Hence
show that λ3 and µ3 are roots of the quadratic polynomial x2− 27qx+
27p3. Use this result to verify that the roots of the cubic polynomial
x3 − px− q are of the form

3

√
q

2
+

√
q2

4
− p3

27
+

3

√
q

2
−

√
q2

4
− p3

27

where the two cube roots must be chosen so as to ensure that their
product is equal to 1

3
p.

4


