Course 311: Galois Theory Problems Academic Year 2007–8

1. Use Eisenstein's criterion to verify that the following polynomials are irreducible over \mathbb{Q} :—

(i)
$$x^2 - 2$$
; (ii) $x^3 + 9x + 3$; (iii) $x^5 + 26x + 52$.

2. Let p be a prime number. Use the fact that the binomial coefficient $\binom{p}{k}$ is divisible by p for all integers k satisfying 0 < k < p to show that if $xf(x) = (x+1)^p - 1$ then the polynomial f is irreducible over \mathbb{Q} .

The cyclotomic polynomial $\Phi_p(x)$ is defined by $\Phi_p(x) = 1 + x + x^2 + \cdots + x^{p-1}$ for each prime number p. Show that $x\Phi_p(x+1) = (x+1)^p - 1$, and hence show that the cyclotomic polynomial Φ_p is irreducible over \mathbb{Q} for all prime numbers p.

- 3. The Fundamental Theorem of Algebra ensures that every non-constant polynomial with complex coefficients factors as a product of polynomials of degree one. Use this result to show that a non-constant polynomial with real coefficients is irreducible over the field \mathbb{R} of real numbers if and only if it is either a polynomial of the form ax + b with $a \neq 0$ or a quadratic polynomial of the form $ax^2 + bx + c$ with $a \neq 0$ and $b^2 < 4ac$.
- 4. A complex number z is said to be algebraic if there f(z) = 0 for some non-zero polynomial f with rational coefficients. Show that $z \in \mathbb{C}$ is algebraic if and only if $\mathbb{Q}(z)$: \mathbb{Q} is a finite extension Then use the Tower Law to prove that the set of all algebraic numbers is a subfield of \mathbb{C} .
- 5. Let L be a splitting field for a polynomial of degree n with coefficients in K. Prove that $[L:K] \leq n!$.
- 6. (a) Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$ and $[\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}] = 4$. What is the degree of the minimum polynomial of $\sqrt{2} + \sqrt{3}$ over \mathbb{Q} ?
 - (b) Show that $\sqrt{2} + \sqrt{3}$ is a root of the polynomial $x^4 10x^2 + 1$, and thus show that this polynomial is an irreducible polynomial whose splitting field over \mathbb{Q} is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (c) Find all \mathbb{Q} -automorphisms of $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, and show that they constitute a group of order 4 isomorphic to a direct product of two cyclic groups of order 2.

- 7. Let K be a field of characteristic p, where p is prime.
 - (a) Show that $f \in K[x]$ satisfies Df = 0 if and only if $f(x) = g(x^p)$ for some $g \in K[x]$.
 - (b) Let $h(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, where $a_0, a_1, \dots, a_n \in K$. Show that $(h(x))^p = g(x^p)$, where $g(x) = a_0^p + a_1^p x + a_2^p x^2 + \dots + a_n^p x^n$.
 - (c) Now suppose that Frobenius monomorphism of K is an automorphism of K. Show that $f \in K[x]$ satisfies Df = 0 if and only if $f(x) = (h(x))^p$ for some $h \in K[x]$. Hence show that $Df \neq 0$ for any irreducible polynomial f in K[x].
 - (d) Use these results to show that every algebraic extension L:K of a finite field K is separable.
- 8. For each positive integer n, let ω_n be the primitive nth root of unity in \mathbb{C} given by $\omega_n = \exp(2\pi i/n)$, where $i = \sqrt{-1}$.
 - (a) Show that the field extensions $\mathbb{Q}(\omega_n)$: \mathbb{Q} and $\mathbb{Q}(\omega_n, i)$: \mathbb{Q} are normal field extensions for all positive integers n.
 - (b) Show that the minimum polynomial of ω_p over \mathbb{Q} is the *cyclotomic* polynomial $\Phi_p(x)$ given by $\Phi_p(x) = 1 + x + x^2 + \cdots + x^{p-1}$. Hence show that $[\mathbb{Q}(\omega_p):\mathbb{Q}] = p-1$ if p is prime.
 - (c) Let p be prime and let $\alpha_k = \omega_{p^2} \omega_p^k = \exp(2\pi i (1 + kp)/p^2)$ for all integers k. Note that $\alpha_0 = \omega_{p^2}$ and $\alpha_k = \alpha_l$ if and only if $k \equiv l \mod p$. Show that if θ is an automorphism of $\mathbb{Q}(\omega_{p^2})$ which fixes $\mathbb{Q}(\omega_p)$ then there exists some integer m such that $\theta(\alpha_k) = \alpha_{k+m}$ for all integers k. Hence show that $\alpha_0, \alpha_1, \ldots, \alpha_{p-1}$ all belong to the orbit of ω_{p^2} under the action of the Galois group $\Gamma(\mathbb{Q}(\omega_{p^2}); \mathbb{Q}(\omega_p))$. Use this result to show that $[\mathbb{Q}(\omega_{p^2}); \mathbb{Q}(\omega_p)] = p$ and $[\mathbb{Q}(\omega_{p^2}); \mathbb{Q}] = p(p-1)$.
- 9. Show that the field $\mathbb{Q}(\xi,\omega)$ is a splitting field for the polynomial x^5-2 over \mathbb{Q} , where $\omega=\omega_5=\exp(2\pi i/5)$ and $\xi=\sqrt[5]{2}$. Show that $[\mathbb{Q}(\xi,\omega):\mathbb{Q}]=20$ and the Galois $\Gamma(\mathbb{Q}(\xi,\omega):\mathbb{Q})$ consists of the automorphisms $\theta_{r,s}$ for r=1,2,3,4 and s=0,1,2,3,4, where $\theta_{r,s}(\omega)=\omega^r$ and $\theta_{r,s}(\xi)=\omega^s\xi$.

10. Let f be a monic polynomial of degree n with coefficients in a field K. Then

$$f(x) = (x - \alpha_1)(x - \alpha_2) \cdots (x - \alpha_n),$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of f in some splitting field L for f over K. The discriminant of the polynomial f is the quantity δ^2 , where δ is the product $\prod_{1 \leq i < j \leq n} (\alpha_j - \alpha_i)$ of the quantities $\alpha_j - \alpha_i$ taken over all pairs of integers i and j satisfying $1 \leq i < j \leq n$.

Show that the quantity δ changes sign whenever α_i is interchanged with α_{i+1} for some i between 1 and n-1. Hence show that $\theta(\delta)=\delta$ for all automorphisms θ in the Galois group $\Gamma(L:K)$ that induce even permutations of the roots of f, and $\theta(\delta)=-\delta$ for all automorphisms θ in $\Gamma(L:K)$ that induce odd permutations of the roots. Then apply the Galois correspondence to show that the discriminant δ^2 of the polynomial f belongs to the field K containing the coefficients of f, and the field $K(\delta)$ is the fixed field of the subgroup of $\Gamma(L:K)$ consisting of those automorphisms in $\Gamma(L:K)$ that induce even permutations of the roots of f. Hence show that $\delta \in K$ if and only if all automorphisms in the Galois group $\Gamma(L:K)$ induce even permutations of the roots of f.

- 11. (a) Show that the discriminant of the quadratic polynomial $x^2 + bx + c$ is $b^2 4c$.
 - (b) Show that the discriminant of the cubic polynomial $x^3 px q$ is $4p^2 27q^2$.
- 12. Let $f(x) = x^3 px q$ be a cubic polynomial with complex coefficients p and q, and let the complex numbers α , β and γ be the roots of f.
 - (a) Give formulae for the coefficients p and q of f in terms of the roots α , β and γ of f, and verify that $\alpha + \beta + \gamma = 0$ and

$$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma = 3q$$

(b) Let $\lambda = \alpha + \omega \beta + \omega^2 \gamma$ and $\mu = \alpha + \omega^2 \beta + \omega \gamma$, where ω is the complex cube root of unity given by $\omega = \frac{1}{2}(-1 + \sqrt{3}i)$. Verify that $1 + \omega + \omega^2 = 0$, and use this result to show that

$$\alpha = \frac{1}{3}(\lambda + \mu), \qquad \beta = \frac{1}{3}(\omega^2 \lambda + \omega \mu), \qquad \gamma = \frac{1}{3}(\omega \lambda + \omega^2 \mu).$$

- (c) Let K be the subfield $\mathbb{Q}(p,q)$ of \mathbb{C} generated by the coefficients of the polynomial f, and let M be a splitting field for the polynomial f over $K(\omega)$. Show that the extension M:K is normal, and is thus a Galois extension. Show that any automorphism in the Galois group $\Gamma(M:K)$ permutes the roots α , β and γ of f and either fixes ω or else sends ω to ω^2 .
- (d) Let $\theta \in \Gamma(M; K)$ be a K-automorphism of M. Suppose that

$$\theta(\alpha) = \beta, \quad \theta(\beta) = \gamma, \quad \theta(\gamma) = \alpha.$$

Show that if $\theta(\omega) = \omega$ then $\theta(\lambda) = \omega^2 \lambda$ and $\theta(\mu) = \omega \mu$. Show also that if $\theta(\omega) = \omega^2$ then $\theta(\lambda) = \omega \mu$ and $\theta(\mu) = \omega^2 \lambda$. Hence show that $\lambda \mu$ and $\lambda^3 + \mu^3$ are fixed by any automorphism in $\Gamma(M:K)$ that cyclically permutes α , β , γ . Show also that the quantities $\lambda \mu$ and $\lambda^3 + \mu^3$ are also fixed by any automorphism in $\Gamma(M:K)$ that interchanges two of the roots of f whilst leaving the third root fixed. Hence prove that $\lambda \mu$ and $\lambda^3 + \mu^3$ belong to the field K generated by the coefficients of f and can therefore be expressed as rational functions of p and q.

(e) Show by direct calculation that $\lambda\mu=3p$ and $\lambda^3+\mu^3=27q$. Hence show that λ^3 and μ^3 are roots of the quadratic polynomial $x^2-27qx+27p^3$. Use this result to verify that the roots of the cubic polynomial x^3-px-q are of the form

$$\sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}}$$

where the two cube roots must be chosen so as to ensure that their product is equal to $\frac{1}{3}p$.