Course 311, Part III: Commutative Algebra Problems Michaelmas Term 2005

1. Let R be a unital commutative ring (i.e., a commutative ring with a non-zero multiplicative identity element, denoted by 1 , which satisfies $1 x=x=x 1$ for all $x \in R$). We say that an element x of R is a unit if and only if there exists some element x^{-1} of R satisfying $x x^{-1}=1=x^{-1} x$.
(a) Show that the set of units of R is a group with respect to the operation of multiplication.
(b) Let $x \in R$. Suppose that there exist $s, t \in R$ such that $s x=1=x t$. Prove that x is a unit of R.
(c) Show that any proper ideal I of R cannot contain any units of R.
(d) Let x be an element of R that is not a unit of R. Show that the set $R x$ of multiples of x is a proper ideal of R, and that $x \in R x$.
(e) Prove that a unital ring R has a exactly one maximal ideal if and only if the set

$$
\{x \in R: X \text { is not a unit of } R\}
$$

is an ideal of R.
2. (a) Let R be a ring. Let \hat{R} be the set of all infinite sequences

$$
\left(r_{0}, r_{1}, r_{2}, \ldots\right)
$$

with $r_{i} \in R$ for all i, and let operations of addition and multiplication be defined on \hat{R} by the formulae

$$
\begin{aligned}
\left(r_{0}, r_{1}, r_{2}, \ldots\right)+\left(s_{0}, s_{1}, s_{2}, \ldots\right) & =\left(r_{0}+s_{0}, r_{1}+s_{1}, r_{2}+s_{2}, \ldots\right), \\
\left(r_{0}, r_{1}, r_{2}, \ldots\right)\left(s_{0}, s_{1}, s_{2}, \ldots\right) & =\left(t_{0}, t_{1}, t_{2}, \ldots\right),
\end{aligned}
$$

where $t_{0}=r_{0} s_{0}, t_{1}=r_{0} s_{1}+s_{0} r_{1}$, and

$$
t_{i}=r_{0} s_{i}+r_{1} s_{i-1}+\cdots+r_{i-1} s_{1}+r_{i} s_{0}
$$

Show that \hat{R}, with these algebraic operations, is a ring.
(b) Explain why the polynomial ring $R[t]$ is isomorphic to the subring of \hat{R} consisting of all sequences $\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ in \hat{R} with the property that $r_{i} \neq 0$ for at most finitely many values of i.
(c) Suppose that the ring R has a non-zero multiplicative identity element 1. Show that $(1,0,0, \ldots)$ is a multiplicative identity element for the ring \hat{R}. By examining the formula for the product of two elements of \hat{R}, or otherwise, show that an element of $\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ of \hat{R} is a unit of \hat{R} if and only if r_{0} is a unit of R.
(d) Suppose that that R is an integral domain. Prove that \hat{R} is also an integral domain. [Hint: given non-zero elements $\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ and $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ of \hat{R} with product $\left(t_{0}, t_{1}, t_{2}, \ldots\right)$, consider t_{m+n}, where m and n are the smallest non-negative integers with the property that $r_{m} \neq 0$ and $s_{n} \neq 0$.]
(e) Suppose that R is a field. Prove that \hat{R} has exactly one maximal ideal, and that this maximal ideal consists of all elements $\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ of \hat{R} satisfying $r_{0}=0$.
(We can think of an element $\left(r_{0}, r_{1}, r_{2}, \ldots\right)$ of the ring \hat{R} as representing a formal power series

$$
r_{0}+r_{1} t+r_{2} t^{2}+\cdots
$$

with coefficients in the ring R. Such formal power series are added and multiplied in the obvious fashion. The ring \hat{R} is therefore referred to as the ring of formal power series in the indeterminate t with coefficients in the ring R, and is customarily denoted by $R[[t]]$.)
3. Let R be a unital commutative ring.
(a) Let I, J and K be ideals of R. Verify that

$$
I+J=J+I, \quad I J=J I, \quad(I+J)+K=I+(J+K)
$$

$(I J) K=I(J K), \quad(I+J) K=I K+J K, \quad I(J+K)=I J+I K$.
(Here $I+J$ denotes the ideal of R consisting of all elements of R that are of the form $i+j$ for some $i \in I$ and $j \in J$, and $I J$ denotes the ideal of R consisting of all elements of R that are of the form $i_{1} j_{1}+i_{2} j_{2}+\cdots+i_{k} j_{k}$ for some elements $i_{1}, i_{2}, \ldots, i_{k}$ of I and $j_{1}, j_{2}, \ldots, j_{k}$ of J.] Explain why the set of ideals of a ring R is not itself a unital commutative ring with respect to these operations of addition and multiplication.
(b) Let I and J be ideals of R satisfying $I+J=R$. Show that $(I+J)^{n} \subset I+J^{n}$ for all natural numbers n and hence prove that $I+J^{n}=R$ for all n. Thus show that $I^{m}+J^{n}=R$ for all natural numbers m and n. (The ideal J^{n} is by definition the set of all elements of R that can be expressed as a finite sum of elements of R of the form $a_{1} a_{2} \cdots a_{n}$ with $a_{i} \in J$ for $i=1,2, \ldots, n$.)
(c) Let I and J be ideals of R satisfying $I+J=R$. By considering the ideal $(I \cap J)(I+J)$, or otherwise, show that $I J=I \cap J$.
4. Let R be a unital commutative ring, and let I be a finitely generated ideal of R. Show that there exists some natural number m such that $I^{m} \subset \sqrt{I}$, where \sqrt{I} is the radical of I. [Hint: let $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ be a finite set that generates the ideal I and let $m=m_{1}+m_{2}+\cdots+m_{k}$, where $m_{1}, m_{2}, \ldots, m_{k}$ are chosen such that $x_{i}^{m_{i}} \in \sqrt{I}$ for $i=1,2, \ldots, k$.]
5. (a) Show that the cubic curve $\left\{\left(t, t^{2}, t^{3}\right) \in \mathbb{A}^{3}(\mathbb{R}): t \in \mathbb{R}\right\}$ is an algebraic set.
(b) Show that the cone $\left\{(s \cos t, s \sin t, s) \in \mathbb{A}^{3}(\mathbb{R}): s, t \in \mathbb{R}\right\}$ is an algebraic set.
(c) Show that the unit sphere $\left\{(z, w) \in \mathbb{A}^{2}(\mathbb{C}):|z|^{2}+|w|^{2}=1\right\}$ in $\mathbb{A}^{2}(\mathbb{C})$ is not an algebraic set.
(d) Show that the curve $\left\{(t \cos t, t \sin t, t) \in \mathbb{A}^{3}(\mathbb{R}): t \in \mathbb{R}\right\}$ is not an algebraic set.
6. Let K be a field, and let \mathbb{A}^{n} denote n-dimensional affine space over the field K.

Let V and W be algebraic sets in \mathbb{A}^{m} and \mathbb{A}^{n} respectively. Show that the Cartesian product $V \times W$ of V and W is an algebraic set in \mathbb{A}^{m+n}, where

$$
\begin{aligned}
V \times W= & \left\{\left(x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{A}^{m+n}:\right. \\
& \left.\left(x_{1}, x_{2}, \ldots, x_{m}\right) \in V \text { and }\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in W\right\} .
\end{aligned}
$$

7. Give an example of a proper ideal I in $\mathbb{R}[X]$ with the property that $V[I]=\emptyset$. [Hint: consider quadratic polynomials in X.]
8. Show that the ideal I of $K[X, Y, Z]$ generated by the polynomials $X^{2}+$ $Y^{2}+Z^{2}$ and $X Y+Y Z+Z X$ is not a radical ideal.
9. Prove that a topological space Z is irreducible if and only if every non-empty open set in Z is connected.
10. Let K be a field, and let \mathbb{A}^{n} denote n-dimensional affine space over the field K.
(a) Consider the algebraic set

$$
\left\{(x, y, z) \in \mathbb{A}^{3}: x y=y z=z x=0\right\} .
$$

Is this set irreducible? Is it connected (with respect to the Zariski topology)?
(b) Consider the algebraic set

$$
\left\{(x, y) \in \mathbb{A}^{2}(K):(y-x)\left(y-x^{2}\right)=0\right\},
$$

where K is a field with at least 3 elements. Is this set irreducible? Is it connected (with respect to the Zariski topology)?

